Recommended Topic Related To:

Adderall

"Jan. 21, 2013 -- The number of children with ADHD is rising rapidly, according to a study of more than 840,000 California children.

While the research findings echo those of nationwide studies, the new study is stronger than some other stud"...

Adderall

Adderall

CLINICAL PHARMACOLOGY

Pharmacodynamics

Amphetamines are non-catecholamine sympathomimetic amines with CNS stimulant activity. The mode of therapeutic action in Attention Deficit Hyperactivity Disorder (ADHD) is not known. Amphetamines are thought to block the reuptake of norepinephrine and dopamine into the presynaptic neuron and increase the release of these monoamines into the extraneuronal space.

Pharmacokinetics

ADDERALL® (amphetamine, dextroamphetamine mixed salts) tablets contain d-amphetamine and l-amphetamine salts in the ratio of 3:1. Following administration of a single dose 10 or 30 mg of ADDERALL® (amphetamine, dextroamphetamine mixed salts) to healthy volunteers under fasted conditions, peak plasma concentrations occurred approximately 3 hours post-dose for both d-amphetamine and l-amphetamine. The mean elimination half-life (t½) for d-amphetamine was shorter than the t½ of the l-isomer (9.77-11 hours vs. 11.5-13.8 hours). The PK parameters (Cmax, AUC0-inf) of d-and l-amphetamine increased approximately three-fold from 10 mg to 30 mg indicating dose-proportional pharmacokinetics.

The effect of food on the bioavailability of ADDERALL® (amphetamine, dextroamphetamine mixed salts) has not been studied.

Metabolism and Excretion:

Amphetamine is reported to be oxidized at the 4 position of the benzene ring to form 4-hydroxyamphetamine, or on the side chain a or carbons to form alpha-hydroxy-amphetamine or norephedrine, respectively. Norephedrine and 4-hydroxy-amphetamine are both active and each is subsequently oxidized to form 4-hydroxy-norephedrine. Alpha-hydroxy-amphetamine undergoes deamination to form phenylacetone, which ultimately forms benzoic acid and its glucuronide and the glycine conjugate hippuric acid. Although the enzymes involved in amphetamine metabolism have not been clearly defined, CYP2D6 is known to be involved with formation of 4-hydroxy-amphetamine. Since CYP2D6 is genetically polymorphic, population variations in amphetamine metabolism are a possibility.

Amphetamine is known to inhibit monoamine oxidase, whereas the ability of amphetamine and its metabolites to inhibit various P450 isozymes and other enzymes has not been adequately elucidated. In vitro experiments with human microsomes indicate minor inhibition of CYP2D6 by amphetamine and minor inhibition of CYP1A2, 2D6, and 3A4 by one or more metabolites. However, due to the probability of auto-inhibition and the lack of information on the concentration of these metabolites relative to in vivo concentrations, no predications regarding the potential for amphetamine or its metabolites to inhibit the metabolism of other drugs by CYP isozymes in vivo can be made.

With normal urine pHs approximately half of an administered dose of amphetamine is recoverable in urine as derivatives of alpha-hydroxy-amphetamine and approximately another 30%-40% of the dose is recoverable in urine as amphetamine itself. Since amphetamine has a pKa of 9.9, urinary recovery of amphetamine is highly dependent on pH and urine flow rates. Alkaline urine pHs result in less ionization and reduced renal elimination, and acidic pHs and high flow rates result in increased renal elimination with clearances greater than glomerular filtration rates, indicating the involvement of active secretion. Urinary recovery of amphetamine has been reported to range from 1% to 75%, depending on urinary pH, with the remaining fraction of the dose hepatically metabolized. Consequently, both hepatic and renal dysfunction have the potential to inhibit the elimination of amphetamine and result in prolonged exposures. In addition, drugs that effect urinary pH are known to alter the elimination of amphetamine, and any decrease in amphetamine's metabolism that might occur due to drug interactions or genetic polymorphisms is more likely to be clinically significant when renal elimination is decreased, (See PRECAUTIONS).

Last reviewed on RxList: 10/4/2010
This monograph has been modified to include the generic and brand name in many instances.

A A A

Adderall - User Reviews

Adderall User Reviews

Now you can gain knowledge and insight about a drug treatment with Patient Discussions.

Here is a collection of user reviews for the medication Adderall sorted by most helpful. Patient Discussions FAQs

Report Problems to the Food and Drug Administration

 

You are encouraged to report negative side effects of prescription drugs to the FDA. Visit the FDA MedWatch website or call 1-800-FDA-1088.


Women's Health

Find out what women really need.

advertisement
advertisement
Use Pill Finder Find it Now See Interactions

Pill Identifier on RxList

  • quick, easy,
    pill identification

Find a Local Pharmacy

  • including 24 hour, pharmacies

Interaction Checker

  • Check potential drug interactions
Search the Medical Dictionary for Health Definitions & Medical Abbreviations