Recommended Topic Related To:


"Nov. 12, 2012 -- The requirement to fast before a cholesterol check can be a major inconvenience.

People who forget to fast may be told to reschedule their appointments. For those who remember, sitting in a doctor's waiting room with "...




A variety of clinical studies have demonstrated that elevated levels of total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), and apolipoprotein B-100 (Apo B) promote human atherosclerosis. Similarly, decreased levels of high-density lipoprotein cholesterol (HDL-C) are associated with the development of atherosclerosis. Epidemiological investigations have established that cardiovascular morbidity and mortality vary directly with the level of TC and LDL-C, and inversely with the level of HDL-C.

Cholesterol-enriched triglyceride-rich lipoproteins, including very low-density lipoproteins (VLDL), intermediate-density lipoproteins (IDL), and their remnants, can also promote atherosclerosis. Elevated plasma triglycerides (TG) are frequently found in a triad with low HDL-C levels and small LDL particles, as well as in association with non-lipid metabolic risk factors for coronary heart disease (CHD). As such, total plasma TG have not consistently been shown to be an independent risk factor for CHD.

As an adjunct to diet, the efficacy of niacin and lovastatin in improving lipid profiles (either individually, or in combination with each other, or niacin in combination with other statins) for the treatment of dyslipidemia has been well documented. The effect of combined therapy with niacin and lovastatin on cardiovascular morbidity and mortality has not been determined.

Effects on lipids


ADVICOR reduces LDL-C, TC, and TG, and increases HDL-C due to the individual actions of niacin and lovastatin. The magnitude of individual lipid and lipoprotein responses may be influenced by the severity and type of underlying lipid abnormality.


Niacin functions in the body after conversion to nicotinamide adenine dinucleotide (NAD) in the NAD coenzyme system. Niacin (but not nicotinamide) in gram doses reduces LDL-C, Apo B, Lp(a), TG, and TC, and increases HDL-C. The increase in HDL-C is associated with an increase in apolipoprotein A-I (Apo A-I) and a shift in the distribution of HDL subfractions. These shifts include an increase in the HDL2:HDL3 ratio, and an elevation in lipoprotein A-I (Lp A-I, an HDL-C particle containing only Apo A-I). In addition, preliminary reports suggest that niacin causes favorable LDL particle size transformations, although the clinical relevance of this effect is not yet clear.


Lovastatin has been shown to reduce both normal and elevated LDL-C concentrations. Apo B also falls substantially during treatment with lovastatin. Since each LDL-C particle contains one molecule of Apo B, and since little Apo B is found in other lipoproteins, this strongly suggests that lovastatin does not merely cause cholesterol to be lost from LDL-C, but also reduces the concentration of circulating LDL particles. In addition, lovastatin can produce increases of variable magnitude in HDL-C, and modestly reduces VLDL-C and plasma TG. The effects of lovastatin on Lp(a), fibrinogen, and certain other independent biochemical risk markers for coronary heart disease are not well characterized.

Mechanism of Action


The mechanism by which niacin alters lipid profiles is not completely understood and may involve several actions, including partial inhibition of release of free fatty acids from adipose tissue, and increased lipoprotein lipase activity (which may increase the rate of chylomicron triglyceride removal from plasma). Niacin decreases the rate of hepatic synthesis of VLDL-C and LDL-C, and does not appear to affect fecal excretion of fats, sterols, or bile acids.


Lovastatin is a specific inhibitor of 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase, the enzyme that catalyzes the conversion of HMG-CoA to mevalonate. The conversion of HMG-CoA to mevalonate is an early step in the biosynthetic pathway for cholesterol. Lovastatin is a prodrug and has little, if any, activity until hydrolyzed to its active beta-hydroxyacid form, lovastatin acid. The mechanism of the LDL-lowering effect of lovastatin may involve both reduction of VLDL-C concentration and induction of the LDL receptor, leading to reduced production and/or increased catabolism of LDL-C.


Absorption and Bioavailability


In single-dose studies of ADVICOR, rate and extent of niacin and lovastatin absorption were bioequivalent under fed conditions to that from NIASPAN® (niacin extended-release tablets) and Mevacor® (lovastatin) tablets, respectively. After administration of two ADVICOR 1000 mg/20 mg tablets, peak niacin concentrations averaged about 18 mcg/mL and occurred about 5 hours after dosing; about 72% of the niacin dose was absorbed according to the urinary excretion data. Peak lovastatin concentrations averaged about 11 ng/mL and occurred about 2 hours after dosing.

The extent of niacin absorption from ADVICOR was increased by administration with food. The administration of two ADVICOR 1000 mg/20 mg tablets under low-fat or high-fat conditions resulted in a 22 to 30% increase in niacin bioavailability relative to dosing under fasting conditions. Lovastatin bioavailability is affected by food. Lovastatin Cmax was increased 48% and 21% after a high- and a low-fat meal, respectively, but the lovastatin AUC was decreased 26% and 24% after a high- and a low-fat meal, respectively, compared to those under fasting conditions.

A relative bioavailability study results indicated that ADVICOR tablet strengths (i.e., two tablets of 500 mg/20 mg and one tablet of 1000 mg/40 mg) are not interchangeable.


Due to extensive and saturable first-pass metabolism, niacin concentrations in the general circulation are dose dependent and highly variable. Peak steady-state niacin concentrations were 0.6, 4.9, and 15.5 mcg/mL after doses of 1000, 1500, and 2000 mg NIASPAN once daily (given as two 500 mg, two 750 mg, and two 1000 mg tablets, respectively).


Lovastatin appears to be incompletely absorbed after oral administration. Because of extensive hepatic extraction, the amount of lovastatin reaching the systemic circulation as active inhibitors after oral administration is low ( <5%) and shows considerable inter-individual variation. Peak concentrations of active and total inhibitors occur within 2 to 4 hours after Mevacor® administration.

Lovastatin absorption appears to be increased by at least 30% by grapefruit juice; however, the effect is dependent on the amount of grapefruit juice consumed and the interval between grapefruit juice and lovastatin ingestion. With a once-a-day dosing regimen, plasma concentrations of total inhibitors over a dosing interval achieved a steady-state between the second and third days of therapy and were about 1.5 times those following a single dose of Mevacor®.

Although the mechanism is not fully understood, cyclosporine has been shown to increase the AUC of HMG-CoA reductase inhibitors. The increase in AUC for lovastatin and lovastatin acid is presumably due, in part, to inhibition of CYP3A4.



Niacin is less than 20% bound to human serum proteins and distributes into milk. Studies using radiolabeled niacin in mice show that niacin and its metabolites concentrate in the liver, kidney, and adipose tissue.


Both lovastatin and its beta-hydroxyacid metabolite are highly bound ( >95%) to human plasma proteins. Distribution of lovastatin or its metabolites into human milk is unknown; however, lovastatin distributes into milk in rats. In animal studies, lovastatin concentrated in the liver, and crossed the blood-brain and placental barriers.



Niacin undergoes rapid and extensive first-pass metabolism that is dose-rate specific and, at the doses used to treat dyslipidemia, saturable. In humans, one pathway is through a simple conjugation step with glycine to form nicotinuric acid (NUA). NUA is then excreted, although there may be a small amount of reversible metabolism back to niacin. The other pathway results in the formation of NAD. It is unclear whether nicotinamide is formed as a precursor to, or following the synthesis of, NAD. Nicotinamide is further metabolized to at least N-methylnicotinamide (MNA) and nicotinamide-N-oxide (NNO). MNA is further metabolized to two other compounds, N-methyl-2-pyridone-5-carboxamide (2PY) and N-methyl-4-pyridone5-carboxamide (4PY). The formation of 2PY appears to predominate over 4PY in humans.


Lovastatin undergoes extensive first-pass extraction and metabolism by cytochrome P450 3A4 in the liver, its primary site of action. The major active metabolites present in human plasma are the beta-hydroxyacid of lovastatin (lovastatin acid), its 6'-hydroxy derivative, and two additional metabolites.



Niacin is primarily excreted in urine mainly as metabolites. After a single dose of ADVICOR, at least 60% of the niacin dose was recovered in urine as unchanged niacin and its metabolites. The plasma half-life for lovastatin was about 4.5 hours in single-dose studies.


The plasma half-life for niacin is about 20 to 48 minutes after oral administration and dependent on dose administered. Following multiple oral doses of NIASPAN, up to 12% of the dose was recovered in urine as unchanged niacin depending on dose administered. The ratio of metabolites recovered in the urine was also dependent on the dose administered.


Lovastatin is excreted in urine and bile, based on studies of Mevacor®. Following an oral dose of radiolabeled lovastatin in man, 10% of the dose was excreted in urine and 83% in feces. The latter represents absorbed drug equivalents excreted in bile, as well as any unabsorbed drug.

Special Populations


No pharmacokinetic studies have been conducted in patients with hepatic insufficiency for either niacin or lovastatin (see WARNINGS, Liver Dysfunction).


No information is available on the pharmacokinetics of niacin in patients with renal insufficiency.

In a study of patients with severe renal insufficiency (creatinine clearance 10 to 30 mL/min), the plasma concentrations of total inhibitors after a single dose of lovastatin were approximately two-fold higher than those in healthy volunteers.

ADVICOR should be used with caution in patients with renal disease.


Plasma concentrations of niacin and metabolites after single- or multiple-dose administration of niacin are generally higher in women than in men, with the magnitude of the difference varying with dose and metabolite. Recovery of niacin and metabolites in urine, however, is generally similar for men and women, indicating similar absorption for both genders. The gender differences observed in plasma niacin and metabolite levels may be due to gender-specific differences in metabolic rate or volume of distribution. Data from clinical trials suggest that women have a greater hypolipidemic response than men at equivalent doses of NIASPAN and ADVICOR.

In a multiple-dose study, plasma concentrations of active and total HMG-CoA reductase inhibitors were 20 to 50% higher in women than in men. In two single-dose studies with ADVICOR, lovastatin concentrations were about 30% higher in women than men, and total HMG-CoA reductase inhibitor concentrations were about 20 to 25% greater in women.

In a multi-center, randomized, double-blind, active-comparator study in patients with Type IIa and IIb hyperlipidemia, ADVICOR was compared to single-agent treatment (NIASPAN and lovastatin). The treatment effects of ADVICOR compared to lovastatin and NIASPAN differed for males and females with a significantly larger treatment effect seen for females. The mean percent change from baseline at endpoint for LDL-C, TG, and HDL-C by gender are as follows (Table 1):

Table 1: Mean percent change from baseline at endpoint for LDL-C, HDL-C and TG by gender

  ADVICOR 2000 mg/40 mg NIASPAN 2000 mg Lovastatin 40 mg
LDL-C -47% -34% -12% -9% -31% -31%
HDL-C 33% 24% 22% 15% 3% 7%
TG -48% -35% -25% -15% -15% -23%

Drug-drug Interactions

Table 2: The Effects of Other Drugs on Lovastatin Exposure When Both Were Co-administered

Drug N Dose of Co-administered Drug or Grapefruit Juice Dosing of Lovastatin AUC Ratio* (with / without coadministered drug)
No Effect = 1.00
Lovastatin Lovastatin Acid†
Gemfibrozil 11 600 mg BID for 3 days 40 mg 0.96 2.8
Itraconazole‡ 12 200 mg QD for 4 days 40 mg on Day 4 > 36§ 22
10 100 mg QD for 4 days 40 mg on Day 4 > 14.8§ 15.4
Grapefruit Juice¶ (high dose) 10 200 mL of double-strength TID# 80 mg single dose 15.3 5
Grapefruit Juice¶ (low dose) 16 8 oz (about 250 mL) of single-strengthÞ for 4 days 40 mg single dose 1.94 1.57
Cyclosporine 16 Not describedβ 10 mg QD for 10 days 5- to 8-fold NDa
  Number of Subjects Dosing of Coadministered Drug or Grapefruit Juice Dosing of Lovastatin AUC Ratio* (with / without coadministered drug) No Effect = 1.00
Total Lovastatin Acid e
Diltiazem 10 120 mg BID for 14 days 20 mg 3.57e
* Results based on a chemical assay.
† Lovastatin acid refers to the β-hydroxyacid of lovastatin.
‡ The mean total AUC of lovastatin without itraconazole phase could not be determined accurately. Results could be representative of strong CYP3A4 inhibitors such as ketoconazole, posaconazole, clarithromycin, telithromycin, HIV protease inhibitors, and nefazodone.
§ Estimated minimum change.
¶The effect of amounts of grapefruit juice between those used in these two studies on lovastatin pharmacokinetics has not been studied.
# Double-strength: one can of frozen concentrate diluted with one can of water. Grapefruit juice was administered TID for 2 days, and 200 mL together with single dose lovastatin and 30 and 90 minutes following single dose lovastatin on Day 3.
Þ Single-strength: one can of frozen concentrate diluted with 3 cans of water. Grapefruit juice was administered with breakfast for 3 days, and lovastatin was administered in the evening on Day 3.
β Cyclosporine-treated patients with psoriasis or post kidney or heart transplant patients with stable graft function, transplanted at least 9 months prior to study.
aND = Analyte not determined.
eLactone converted to acid by hydrolysis prior to analysis. Figure represents total unmetabolized acid and lactone.

Clinical Studies

In a multi-center, randomized, double-blind, parallel, 28-week, active-comparator study in patients with Type IIa and IIb hyperlipidemia, ADVICOR was compared to each of its components (NIASPAN and lovastatin). Using a forced dose-escalation study design, patients received each dose for at least 4 weeks. Patients randomized to treatment with ADVICOR initially received 500 mg/20 mg. The dose was increased at 4-week intervals to a maximum of 1000 mg/20 mg in one-half of the patients and 2000 mg/40 mg in the other half. The NIASPAN monotherapy group underwent a similar titration from 500 mg to 2000 mg. The patients randomized to lovastatin monotherapy received 20 mg for 12 weeks titrated to 40 mg for up to 16 weeks. Up to a third of the patients randomized to ADVICOR or NIASPAN discontinued prior to Week 28. In this study, ADVICOR decreased LDL-C, TG and Lp(a), and increased HDL-C in a dose-dependent fashion (3, 4, 5 and 6 below). Results from this study for LDL-C mean percent change from baseline (the primary efficacy variable) showed that:

  1. LDL-lowering with ADVICOR was significantly greater than that achieved with lovastatin 40 mg only after 28 weeks of titration to a dose of 2000 mg/40 mg (p <.0001)
  2. ADVICOR at doses of 1000 mg/20 mg or higher achieved greater LDL-lowering than NIASPAN (p <.0001) The LDL-C results are summarized in Table 3.

Table 3: LDL-C mean percent change from baseline

n* Dose (mg/mg) LDL n* Dose (mg) LDL n* Dose (mg) LDL
Baseline 57 - 190.9 mg/dL 61 - -189.7 mg/dL 61 - 185.6 mg/dL
12 47 1000/20 -30% 46 1000 -3% 56 20 -29%
16 45 1000/40 -36% 44 1000 -6% 56 40 -31%
20 42 1500/40 -37% 43 1500 -12% 54 40 -34%
28 42 2000/40 -42% 41 2000 -14% 53 40 -32%
*n = number of patients remaining in the trial at each timepoint

ADVICOR achieved significantly greater HDL-raising compared to lovastatin and NIASPAN monotherapy at all doses (Table 4).

Table 4: HDL-C mean percent change from baseline

n* Dose (mg/mg) HDL n* Dose (mg) HDL n* Dose (mg) HDL
Baseline 57 - 45 mg/dL 61 - 47 mg/dL 61 - 43 mg/dL
12 47 1000/20 20% 46 1000 +14% 56 20 +3%
16 45 1000/40 20% 44 1000 +15% 56 40 +5%
20 42 1500/40 27% 43 1500 +22% 54 40 +6%
28 42 2000/40 30% 41 2000 +24% 53 40 +6%
*n = number of patients remaining in the trial at each timepoint

In addition, ADVICOR achieved significantly greater TG-lowering at doses of 1000 mg/20 mg or greater compared to lovastatin and NIASPAN monotherapy (Table 5).

Table 5: TG median percent change from baseline

n* Dose (mg/mg) TG n* Dose (mg) TG n* Dose (mg) TG
Baseline 57 - 174 mg/dL 61 - 186 mg/dL 61 - 171 mg/dL
12 47 1000/20 -32% 46 1000 -22% 56 20 -20%
16 45 1000/40 -39% 44 1000 -23% 56 40 -17%
20 42 1500/40 -44% 43 1500 -31% 54 40 -21%
28 42 2000/40 -44% 41 2000 -31% 53 40 -20%
*n = number of patients remaining in the trial at each timepoint

The Lp(a) lowering effects of ADVICOR and NIASPAN were similar, and both were superior to lovastatin (Table 6). The independent effect of lowering Lp(a) with NIASPAN or ADVICOR on the risk of coronary and cardiovascular morbidity and mortality has not been determined.

Table 6: Lp(a) median percent change from baseline

n* Dose (mg/mg) Lp(a) n* Dose (mg) Lp(a) n* Dose (mg) Lp(a)
Baseline 57 - 34 mg/dL 61 - 41 mg/dL 60 - 42 mg/dL
12 47 1000/20 -9% 46 1000 -8% 55 20 +8%
16 45 1000/40 -9% 44 1000 -12% 55 40 +8%
20 42 1500/40 -17% 43 1500 -22% 53 40 +6%
28 42 2000/40 -22% 41 2000 -32% 52 40 0%
*n = number of patients remaining in the trial at each timepoint

ADVICOR Long-Term Study

A total of 814 patients were enrolled in a long-term (52-week), open-label, single-arm study of ADVICOR. Patients were force dose-titrated to 2000 mg/40 mg over 16 weeks. After titration, patients were maintained on the maximum tolerated dose of ADVICOR for a total of 52 weeks. Five hundred-fifty (550) patients (68%) completed the study, and fifty-six percent (56%) of all patients were able to maintain a dose of 2000 mg/40 mg for the 52 weeks of treatment. The lipid-altering effects of ADVICOR peaked after 4 weeks on the maximum tolerated dose, and were maintained for the duration of treatment. These effects were comparable to what was observed in the double-blind study of ADVICOR (Tables 3-5).

Last reviewed on RxList: 4/26/2012
This monograph has been modified to include the generic and brand name in many instances.


Advicor - User Reviews

Advicor User Reviews

Now you can gain knowledge and insight about a drug treatment with Patient Discussions.

Here is a collection of user reviews for the medication Advicor sorted by most helpful. Patient Discussions FAQs

Report Problems to the Food and Drug Administration


You are encouraged to report negative side effects of prescription drugs to the FDA. Visit the FDA MedWatch website or call 1-800-FDA-1088.

Cholesterol Management

Tips to keep it under control.

Use Pill Finder Find it Now See Interactions

Pill Identifier on RxList

  • quick, easy,
    pill identification

Find a Local Pharmacy

  • including 24 hour, pharmacies

Interaction Checker

  • Check potential drug interactions
Search the Medical Dictionary for Health Definitions & Medical Abbreviations