September 4, 2015
Recommended Topic Related To:

Asmanex

"What are allergies?

Allergies occur when the body's immune system responds to a substance it considers an "invader." Substances that provoke the immune system into an allergic response are known as allergens. There is no such thing as a"...

Asmanex Twisthaler




CLINICAL PHARMACOLOGY

Mechanism Of Action

Mometasone furoate is a corticosteroid demonstrating potent anti-inflammatory activity. The precise mechanism of corticosteroid action on asthma is not known. Inflammation is an important component in the pathogenesis of asthma. Corticosteroids have been shown to have a wide range of inhibitory effects on multiple cell types (e.g., mast cells, eosinophils, neutrophils, macrophages, and lymphocytes) and mediators (e.g., histamine, eicosanoids, leukotrienes, and cytokines) involved in inflammation and in the asthmatic response. These anti-inflammatory actions of corticosteroids may contribute to their efficacy in asthma.

Mometasone furoate has been shown in vitro to exhibit a binding affinity for the human glucocorticoid receptor, which is approximately 12 times that of dexamethasone, 7 times that of triamcinolone acetonide, 5 times that of budesonide, and 1.5 times that of fluticasone. The clinical significance of these findings is unknown.

Pharmacodynamics

HPA Axis Effects

The effects of inhaled mometasone furoate administered via ASMANEX HFA on adrenal function have not been directly evaluated. However, the effects of inhaled mometasone furoate, administered as part of a mometasone furoate/formoterol fumarate inhalation aerosol combination product, on adrenal function were evaluated in two clinical trials in patients with asthma. As no evidence of a pharmacokinetic drug interaction between mometasone furoate and formoterol was observed when the two drugs were administered in combination, the HPA axis effects from the combination product are applicable to ASMANEX HFA. For the mometasone furoate/formoterol fumarate combination product clinical program, HPA-axis function was assessed by 24-hour plasma cortisol AUC. Although both these trials have openlabel design and contain a small number of subjects per treatment arm, results from these trials taken together demonstrated suppression of 24-hour plasma cortisol AUC for the combination mometasone furoate/formoterol fumarate 200 mcg/5 mcg compared to placebo consistent with the known systemic effects of inhaled corticosteroid.

In a 42-day, open-label, placebo- and active-controlled study, the mean change from baseline plasma cortisol AUC(0-24 hr) was 8%, 22% and 34% lower compared to placebo for the mometasone furoate/formoterol fumarate 100 mcg/5 mcg (n=13), mometasone furoate/formoterol fumarate 200 mcg/5 mcg (n=15) and fluticasone propionate/salmeterol xinafoate 230 mcg/21 mcg (n=16) treatment groups, respectively.

In a 52-week, open-label safety study, the mean plasma cortisol AUC(0-24 hr) was 2.2%, 29.6%, 16.7%, and 32.2% lower from baseline for the mometasone furoate/formoterol fumarate 100 mcg/5 mcg (n=18), mometasone furoate/formoterol fumarate 200 mcg/5 mcg (n=20), fluticasone propionate/salmeterol xinafoate 125/25 mcg (n=8), and fluticasone propionate/salmeterol xinafoate 250/25 mcg (n=11) treatment groups, respectively.

The potential effect of mometasone furoate via a dry powder inhaler (DPI) on the HPA axis was also assessed in a 29-day study. A total of 64 adult patients with mild to moderate asthma were randomized to one of 4 treatment groups: mometasone furoate DPI 440 mcg twice daily, mometasone furoate DPI 880 mcg twice daily, oral prednisone 10 mg once daily, or placebo. The 30-minute post- Cosyntropin stimulation serum cortisol concentration on Day 29 was 23.2 mcg/dL for the mometasone furoate DPI 440 mcg twice daily group and 20.8 mcg/dL for the mometasone furoate DPI 880 mcg twice daily group, compared to 14.5 mcg/dL for the oral prednisone 10 mg group and 25 mcg/dL for the placebo group. The difference between mometasone furoate DPI 880 mcg twice daily (twice the maximum recommended dose) and placebo was statistically significant.

Pharmacokinetics

As no evidence of a pharmacokinetic drug interaction between mometasone furoate and formoterol was observed when the two drugs were administered from a mometasone furoate/formoterol fumarate combination product, the pharmacokinetics information from the combination product is applicable to ASMANEX HFA.

Absorption

Healthy Subjects: Following oral inhalation of single doses of ASMANEX HFA, mometasone furoate was absorbed in healthy subjects with median Tmax values ranging from 0.50 to 2 hours. Following singledose administration of higher than recommended dose of ASMANEX HFA (4 inhalations of ASMANEX HFA 200 mcg) in healthy subjects, the arithmetic mean (CV%) Cmax and AUC(0-tf) values for mometasone furoate were 53 (102) pg/mL and 992 (80) pg•hr/mL, respectively. Studies using oral dosing of labeled and unlabeled drug have demonstrated that the oral systemic bioavailability of mometasone furoate is negligible ( < 1%).

Asthma Patients: Following oral inhalation of single and multiple doses of the mometasone furoate/formoterol fumarate combination product, mometasone furoate was absorbed in asthma patients with median Tmax values ranging from 1 to 2 hours. Following single-dose administration of mometasone furoate/formoterol fumarate 400 mcg/10 mcg, the arithmetic mean (CV%) Cmax and AUC(0-12 hr) values for mometasone furoate were 20 (88) pg/mL and 170 (94) pg•hr/mL, respectively, while the corresponding estimates following twice daily dosing of mometasone furoate/formoterol fumarate 400 mcg/10 mcg at steady-state were 60 (36) pg/mL and 577 (40) pg•hr/mL.

Distribution

Based on the study employing a 1000 mcg inhaled dose of tritiated mometasone furoate inhalation powder in humans, no appreciable accumulation of mometasone furoate in the red blood cells was found. Following an intravenous 400 mcg dose of mometasone furoate, the plasma concentrations showed a biphasic decline, with a mean steady-state volume of distribution of 152 liters. The in vitro protein binding for mometasone furoate was reported to be 98% to 99% (in a concentration range of 5 to 500 ng/mL).

Metabolism

Studies have shown that mometasone furoate is primarily and extensively metabolized in the liver of all species investigated and undergoes extensive metabolism to multiple metabolites. In vitro studies have confirmed the primary role of human liver CYP3A4 in the metabolism of this compound; however, no major metabolites were identified. Human liver CYP3A4 metabolizes mometasone furoate to 6-beta hydroxy mometasone furoate.

Excretion

Following an intravenous dosing, the terminal half-life was reported to be about 5 hours. Following the inhaled dose of tritiated 1000 mcg mometasone furoate, the radioactivity is excreted mainly in the feces (a mean of 74%), and to a small extent in the urine (a mean of 8%) up to 7 days. No radioactivity was associated with unchanged mometasone furoate in the urine. Absorbed mometasone furoate is cleared from plasma at a rate of approximately 12.5 mL/min/kg, independent of dose. The effective t½ for mometasone furoate following inhalation with DULERA was 25 hours in healthy subjects and in patients with asthma.

Special Populations

Hepatic/Renal Impairment: There are no data regarding the specific use of ASMANEX HFA in patients with hepatic or renal impairment.

A study evaluating the administration of a single inhaled dose of 400 mcg mometasone furoate by a dry powder inhaler to subjects with mild (n=4), moderate (n=4), and severe (n=4) hepatic impairment resulted in only 1 or 2 subjects in each group having detectable peak plasma concentrations of mometasone furoate (ranging from 50-105 pg/mL). The observed peak plasma concentrations appear to increase with severity of hepatic impairment; however, the numbers of detectable levels were few.

Gender and Race: Specific studies to examine the effects of gender and race on the pharmacokinetics of ASMANEX HFA have not been specifically studied.

Geriatrics: The pharmacokinetics of ASMANEX HFA have not been specifically studied in the elderly population.

Drug-Drug Interactions

A single-dose crossover study was conducted to compare the pharmacokinetics of 4 inhalations of the following: mometasone furoate MDI, formoterol MDI, mometasone furoate/formoterol fumarate MDI combination product, and mometasone furoate MDI plus formoterol fumarate MDI administered concurrently. The results of the study indicated that there was no evidence of a pharmacokinetic interaction between mometasone furoate and formoterol.

Inhibitors of Cytochrome P450 Enzymes: Ketoconazole: In a drug interaction study, an inhaled dose of mometasone furoate 400 mcg delivered by a dry powder inhaler was given to 24 healthy subjects twice daily for 9 days and ketoconazole 200 mg (as well as placebo) were given twice daily concomitantly on Days 4 to 9. Mometasone furoate plasma concentrations were < 150 pg/mL on Day 3 prior to coadministration of ketoconazole or placebo. Following concomitant administration of ketoconazole, 4 out of 12 subjects in the ketoconazole treatment group (n=12) had peak plasma concentrations of mometasone furoate > 200 pg/mL on Day 9 (211-324 pg/mL). Mometasone furoate plasma levels appeared to increase and plasma cortisol levels appeared to decrease upon concomitant administration of ketoconazole.

Animal Toxicology And/Or Pharmacology

Reproductive Toxicology Studies

In mice, mometasone furoate caused cleft palate at subcutaneous doses of 60 mcg/kg and above (approximately one-third of the maximum recommended human dose MRHD on a mcg/m² basis). Fetal survival was reduced at 180 mcg/kg (approximately equal to the MRHD on a mcg/m² basis). No toxicity was observed at 20 mcg/kg (approximately one-tenth of the MRHD on a mcg/m² basis).

In rats, mometasone furoate produced umbilical hernia at topical dermal doses of 600 mcg/kg and above (approximately 6 times the MRHD on a mcg/m² basis). A dose of 300 mcg/kg (approximately 3 times the MRHD on a mcg/m² basis) produced delays in ossification, but no malformations.

When rats received subcutaneous doses of mometasone furoate throughout pregnancy or during the later stages of pregnancy, 15 mcg/kg (approximately 8 times the MRHD on an AUC basis) caused prolonged and difficult labor and reduced the number of live births, birth weight, and early pup survival. Similar effects were not observed at 7.5 mcg/kg (approximately 4 times the MRHD on an AUC basis).

In rabbits, mometasone furoate caused multiple malformations (e.g., flexed front paws, gallbladder agenesis, umbilical hernia, hydrocephaly) at topical dermal doses of 150 mcg/kg and above (approximately 3 times the MRHD on a mcg/m² basis). In an oral study, mometasone furoate increased resorptions and caused cleft palate and/or head malformations (hydrocephaly and domed head) at 700 mcg/kg (less than the MRHD on an AUC basis). At 2800 mcg/kg (approximately 2 times the MRHD on an AUC basis) most litters were aborted or resorbed. No toxicity was observed at 140 mcg/kg (less than the MRHD on an AUC basis).

Clinical Studies

Asthma

The safety and efficacy of ASMANEX HFA was demonstrated in two randomized, double-blind, placebo- or active-controlled multi-center clinical trials of 12 and 26 weeks' duration, conducted as part of a mometasone furoate/formoterol fumarate 100/5 mcg or 200/5 mcg combination product development program. A total of 1509 patients 12 years of age and older with persistent asthma (mean baseline FEV1 of 66% to 73% predicted) were evaluated.

Trial 1: Clinical Trial with ASMANEX HFA 100 mcg

This 26-week, placebo-controlled trial conducted as part of a mometasone furoate/formoterol fumarate combination product asthma program evaluated 781 patients 12 years of age and older. Of these patients, 192 patients received ASMANEX HFA 100 mcg and 196 patients received placebo, each administered as 2 inhalations twice daily by metered dose inhalation aerosols. All other maintenance therapies were discontinued. The study included a 2- to 3-week run-in period with ASMANEX HFA 100 mcg, 2 inhalations twice daily. Patients ranged from 12 to 76 years of age, 41% were male and 59% female, and 72% were Caucasian and 28% non-Caucasian. Patients had persistent asthma and were not well controlled on medium dose of inhaled corticosteroids prior to randomization. Mean FEV1 and mean percent predicted FEV1 were similar among all treatment groups (2.33 L, 73%). Thirteen (7%) patients receiving ASMANEX HFA 100 mcg and 46 (23%) patients receiving placebo discontinued the study early due to treatment failure.

The change in mean trough FEV1 from baseline to Week 12 compared to placebo was assessed to evaluate the efficacy of ASMANEX HFA 100 mcg. The change from baseline to week 12 in the mean trough FEV1 was greater among patients receiving ASMANEX HFA 100 mcg 2 inhalations twice daily than among those receiving placebo (treatment difference from placebo 0.12 L and 95% confidence interval [0.05, 0.20]).

Clinically judged deteriorations in asthma or reductions in lung function were also assessed to evaluate the efficacy of ASMANEX HFA 100 mcg. Deteriorations in asthma were defined as any of the following: a 20% decrease in FEV1; a 30% decrease in PEF on two or more consecutive days; emergency treatment, hospitalization, or treatment with systemic corticosteroids or other asthma medications not allowed per protocol. Sixty-five (34%) patients who received ASMANEX HFA 100 mcg reported an event compared to 109 (56%) patients who received placebo.

Treatment of asthma patients with ASMANEX HFA 100 mcg, two inhalations twice daily also resulted in fewer nocturnal awakenings and improved morning peak flow compared to those who received placebo.

Trial 2: Clinical Trial with ASMANEX HFA 200 mcg

This 12-week randomized, double-blind, active-controlled trial also conducted as part of a mometasone furoate/formoterol fumarate combination product asthma program evaluated a total of 728 patients 12 years of age and older comparing ASMANEX HFA 200 mcg (n=240 patients), mometasone furoate/formoterol fumarate 200 mcg/5 mcg (n=255 patients), and mometasone furoate/formoterol fumarate 100 mcg/5 mcg (n=233 patients), each administered as 2 inhalations twice daily by metered dose inhalation aerosols. All other maintenance therapies were discontinued. This trial included a 2- to 3- week run-in period with ASMANEX HFA 200 mcg, 2 inhalations twice daily. Patients had persistent asthma and were uncontrolled on high-dose inhaled corticosteroids prior to study entry. Patients ranged from 12 to 84 years of age, 44% were male and 56% female, and 89% were Caucasian and 11% non- Caucasian. Mean FEV1 and mean percent predicted FEV1 values were similar among all treatment groups (2.05 L, 66%). The number of patients who discontinued the trial early due to treatment failure were 11 (5%) in the mometasone furoate/formoterol fumarate 100 mcg/5 mcg group, 8 (3%) in the mometasone furoate/formoterol fumarate 200 mcg/5 mcg group, and 13 (5%) in the ASMANEX HFA 200 mcg group.

In order to assess the added benefit of a higher dose of mometasone in the 200 mcg/actuation mometasone furoate product compared to the lower dose 100 mcg/actuation product, trough FEV1 at 12 weeks was compared between the combination mometasone furoate/formoterol fumarate 200 mcg/5 mcg and 100 mcg/5 mcg treatment groups as a secondary endpoint. Improvement in trough FEV1 from baseline to week 12 in patients who received mometasone furoate 200 mcg in combination with formoterol fumarate 5 mcg was numerically greater than among patients who received mometasone furoate 100 mcg in combination with formoterol fumarate 5 mcg (treatment difference of 0.05 L and 95% confidence interval [-0.02, 0.10]).

Other Studies

In addition to Trial 1 and Trial 2, the safety and efficacy of mometasone furoate MDI 100 mcg and 200 mcg, in comparison to placebo were demonstrated in three other 12-week, placebo-controlled trials which evaluated the mean change in FEV1 from baseline as a primary endpoint.

Last reviewed on RxList: 7/22/2015
This monograph has been modified to include the generic and brand name in many instances.

Asmanex Twisthaler - User Reviews

Asmanex Twisthaler User Reviews

Now you can gain knowledge and insight about a drug treatment with Patient Discussions.

Here is a collection of user reviews for the medication Asmanex Twisthaler sorted by most helpful. Patient Discussions FAQs

Report Problems to the Food and Drug Administration

 

You are encouraged to report negative side effects of prescription drugs to the FDA. Visit the FDA MedWatch website or call 1-800-FDA-1088.


Allergies & Asthma

Improve treatments & prevent attacks.