Recommended Topic Related To:

Avinza

"Nov. 2, 2012 -- Safety steps taken in the wake of the fungal meningitis outbreak have worsened drug shortages, raising questions about whether the U.S. must choose between the safety and the availability of crucial medicines.

Ameridos"...

Avinza

CLINICAL PHARMACOLOGY

Mechanism Of Action

Morphine sulfate, an opioid agonist, is relatively selective for the mu receptor, although it can interact with other opioid receptors at higher doses. In addition to analgesia, the widely diverse effects of morphine include drowsiness, changes in mood, respiratory depression, decreased gastrointestinal motility, nausea, vomiting, and alterations of the endocrine and autonomic nervous system.

Morphine produces both its therapeutic and its adverse effects by interaction with one or more classes of specific opioid receptors located throughout the body. Morphine acts as a full agonist, binding with and activating opioid receptors at sites in the periaqueductal and peri-ventricular grey matter, the ventro-medial medulla and the spinal cord to produce analgesia.

Pharmacodynamics

Plasma Level-Analgesia Relationships

While plasma morphine-efficacy relationships can be demonstrated in non-tolerant individuals, they are influenced by a wide variety of factors and are not generally useful as a guide to the clinical use of morphine. The effective dose in opioid-tolerant patients may be 10-50 times as great (or greater) than the appropriate dose for opioid-na´ve individuals. Dosages of morphine should be chosen and must be titrated on the basis of clinical evaluation of the patient and the balance between therapeutic and adverse effects.

CNS Depressant/Alcohol Interaction

Additive pharmacodynamic effects may be expected when AVINZA is used in conjunction with alcohol, other opioids, or illicit drugs that cause central nervous system depression.

Effects on the Central Nervous System

The principal therapeutic action of morphine is analgesia. Other therapeutic effects of morphine include anxiolysis, euphoria, and feelings of relaxation. Although the precise mechanism of the analgesic action is unknown, specific CNS opiate receptors and endogenous compounds with morphine-like activity have been identified throughout the brain and spinal cord and are likely to play a role in the expression and perception of analgesic effects. In common with other opioids, morphine causes respiratory depression, in part by a direct effect on the brainstem respiratory centers. Morphine and related opioids depress the cough reflex by direct effect on the cough center in the medulla. Antitussive effects may occur with doses lower than those usually required for analgesia. Morphine causes miosis, even in total darkness. Pinpoint pupils are a sign of opioid overdose; however, when asphyxia is present during opioid overdose, marked mydriasis occurs.

Effects on the Gastrointestinal Tract and Other Smooth Muscle

Gastric, biliary, and pancreatic secretions are decreased by morphine. Morphine causes a reduction in motility and is associated with an increase in tone in the antrum of the stomach and duodenum. Digestion of food in the small intestine is delayed and propulsive contractions are decreased. Propulsive peristaltic waves in the colon are decreased, while tone is increased to the point of spasm. The end result may be constipation. Morphine can cause a marked increase in biliary tract pressure as a result of spasm of the sphincter of Oddi. Morphine may also cause spasm of the sphincter of the urinary bladder.

Effects on the Cardiovascular System

In therapeutic doses, morphine does not usually exert major effects on the cardiovascular system. Morphine produces peripheral vasodilation which may result in orthostatic hypotension and fainting. Release of histamine can occur, which may play a role in opioid-induced hypotension. Manifestations of histamine release and/or peripheral vasodilation may include pruritus, flushing, red eyes, and sweating.

Effects on the Endocrine System

Opioids inhibit the secretion of ACTH, cortisol, and luteinizing hormone (LH) in humans. They also stimulate prolactin, growth hormone (GH) secretion, and pancreatic secretion of insulin and glucagon. Chronic use of opioids may influence the hypothalamic-pituitary-gonadal axis, leading to hormonal changes that may manifest as symptoms of hypogonadism.

Effects on the Immune System Opioids have been shown to have a variety of effects on components of the immune system in in vitro and animal models. The clinical significance of these findings is unknown. Overall, the effects of opioids appear to be modestly immunosuppressive.

Pharmacokinetics

Absorption

AVINZA consists of two components, an immediate-release component and an extended-release component.

The oral bioavailability of morphine is less than 40% and shows large inter-individual variability due to extensive pre-systemic metabolism.

Following single-dose oral administration of a 60 mg dose of AVINZA under fasting conditions, morphine concentrations of approximately 3 to 6 ng/ml were achieved within 30 minutes after dosing and maintained for the 24-hour dosing interval. The pharmacokinetics of AVINZA were shown to be dose-proportional over a single oral dose range of 30 to 120 mg in healthy volunteers and a multiple oral dose range of at least 30 to 180 mg in patients with chronic moderate to severe pain.

Food Effect: When a 60 mg dose of AVINZA was administered immediately following a high fat meal, peak morphine concentrations and AUC values were similar to those observed when the dose of AVINZA was administered in a fasting state, although achievement of initial concentrations was delayed by approximately 1 hour under fed conditions. Therefore, AVINZA can be administered without regard to food. When the contents of AVINZA were administered by sprinkling on applesauce, the rate and extent of morphine absorption were found to be bioequivalent to the same dose when administered as an intact capsule.

Steady State: Steady-state plasma concentrations of morphine are achieved 2 to 3 days after initiation of once-daily administration of AVINZA.

AVINZA 60mg Capsules (once-daily) and 10mg morphine oral solution (6 times daily) were equally bioavailable

Figure 1

AVINZA® (morphine sulfate) Figure 1 Illustration

A once-daily dose of AVINZA provided similar Cmax, Cmin, and AUC values and peak-trough fluctuations (% FL, Cmax-Cmin/Cav) compared to 6-times daily administration of the same total daily dose of morphine oral solution (Table 1).

Table 1 : Pharmacokinetic Data Mean ± SD

Parameter AVINZA Capsules Once-Daily Morphine Oral Solution 6-Times  Daily
AUC (ng/ml.h) 273.25 ± 81.24 279.11 ± 63.00
Cmax (ng/ml) 18.65 ± 7.13 19.96 ± 4.82
Cmin (ng/ml) 6.98 ± 2.44 6.61 ±2.15
% FL 106.38 ± 78.14 116.22 ±26.67

Distribution

Once absorbed, morphine is distributed to skeletal muscle, kidneys, liver, intestinal tract, lungs, spleen and brain. Although the primary site of action is the CNS, only small quantities cross the blood-brain barrier. Morphine also crosses the placental membranes and has been found in breast milk [see Use In Specific Populations]. The volume of distribution of morphine is approximately 1 to 6 L/kg, and morphine is 20 to 35% reversibly bound to plasma proteins.

Metabolism

The major pathways of morphine metabolism include glucuronidation to produce metabolites including morphine-3-glucuronide, M3G (about 50%) and morphine-6-glucuronide, M6G (about 5 to 15%) and sulfation in the liver to produce morphine-3-etheral sulfate. A small fraction (less than 5%) of morphine is demethylated. M6G has been shown to have analgesic activity but crosses the blood-brain barrier poorly, while M3G has no significant analgesic activity.

Excretion

Approximately 10% of a morphine dose is excreted unchanged in the urine. Elimination of morphine is primarily via hepatic metabolism to glucuronide metabolites M3G and M6G which are then renally excreted. A small amount of the glucuronide metabolites is excreted in the bile and there is some minor enterohepatic recycling. Seven to 10% of administered morphine is excreted in the feces. The mean adult plasma clearance of morphine is about 20 – 30 mL/minute/kg. The effective terminal half life of morphine after IV administration is reported to be approximately 2 hours. The terminal elimination half-life of morphine following single dose of AVINZA administration is approximately 24 hrs.

Specific Populations

Geriatric Patients

The pharmacokinetics of AVINZA have not been studied in elderly patients.

Pediatric Patients

The pharmacokinetics of AVINZA have not been studied in pediatric patients below the age of 18. The range of dose strengths available may not be appropriate for treatment of very young pediatric patients. Sprinkling on applesauce is NOT a suitable alternative for these patients.

Gender

A gender analysis of pharmacokinetic data from healthy subjects taking AVINZA indicated that morphine concentrations were similar in males and females.

Race

Chinese subjects given intravenous morphine had a higher clearance when compared to Caucasian subjects (1852 +/-116 ml/min compared to 1495 +/- 80 ml/min).

Hepatic Impairment

Morphine pharmacokinetics are altered in individuals with cirrhosis. Clearance was found to decrease with a corresponding increase in half-life. The M3G and M6G to morphine plasma AUC ratios also decreased in these subjects, indicating diminished metabolic activity. Adequate studies of the pharmacokinetics of morphine in patients with severe hepatic impairment have not been conducted.

Renal Impairment

Morphine pharmacokinetics are altered in patients with renal failure. The AUC is increased and clearance is decreased and the metabolites, M3G and M6G, may accumulate to much higher plasma levels in patients with renal failure as compared to patients with normal renal function. Adequate studies of the pharmacokinetics of morphine in patients with severe renal impairment have not been conducted.

Drug Interaction/Alcohol Interaction

In in vitro studies of the dissolution of AVINZA 30 mg mixed with 900 mL of buffer solutions containing ethanol (20% and 40%), the amount of morphine released increased in an alcohol concentration-dependent manner. While the relevance of in vitro lab tests regarding AVINZA to the clinical setting remains to be determined, this acceleration of release may correlate with in vivo rapid release of the total morphine dose, which could result in the absorption of a potentially fatal dose of morphine.

Clinical Studies

AVINZA was studied in a double-blind, placebo-controlled, fixed-dose, parallel group trial in 295 patients with moderate to severe pain due to osteoarthritis. These patients had either a prior sub-optimal response to acetaminophen, NSAID therapy, or previously received intermittent opioid analgesic therapy. Thirty-milligrams AVINZA capsules administered once-daily, either in the morning or the evening, were more effective than placebo in reducing pain.

Table 2 : Change from Baseline in WOMAC OA Index Pain VAS Subscale Score

Overall Placebo AVINZA QAM AVINZA QPM
LS Mean -36.23 -75.26a -75.39a
Std. Error 11.482 11.305 11.747
a P < 0.05; REPEATED MEASURES ANALYSIS

This study was not designed to assess the effects of AVINZA on the course of the osteoarthritis.

Last reviewed on RxList: 5/1/2014
This monograph has been modified to include the generic and brand name in many instances.

A A A

Avinza - User Reviews

Avinza User Reviews

Now you can gain knowledge and insight about a drug treatment with Patient Discussions.

Here is a collection of user reviews for the medication Avinza sorted by most helpful. Patient Discussions FAQs

Report Problems to the Food and Drug Administration

 

You are encouraged to report negative side effects of prescription drugs to the FDA. Visit the FDA MedWatch website or call 1-800-FDA-1088.


Chronic Pain/Back Pain

Find tips and advances in treatment.


NIH talks about Ebola on WebMD