Recommended Topic Related To:

Betimol

"A study in mice reveals an elegant circuit within the developing visual system that helps dictate how the eyes connect to the brain. The research, funded by the National Institutes of Health, has implications for treating amblyopia, a vision diso"...

Betimol

Warnings
Precautions

WARNINGS

As with other topically applied ophthalmic drugs, Betimol® (timolol ophthalmic solution) is absorbed systemically. The same adverse reactions found with systemic administration of beta-adrenergic blocking agents may occur with topical administration. For example, severe respiratory and cardiac reactions, including death due to bronchospasm in patients with asthma, and rarely, death in association with cardiac failure have been reported following systemic or topical administration of beta-adrenergic blocking agents.

Cardiac Failure

Sympathetic stimulation may be essential for support of the circulation in individuals with diminished myocardial contractility, and its inhibition by beta-adrenergic receptor blockade may precipitate more severe cardiac failure.

In patients without a history of cardiac failure, continued depression of the myocardium with beta-blocking agents over a period of time can, in some cases, lead to cardiac failure. Betimol® (timolol ophthalmic solution) should be discontinued at the first sign or symptom of cardiac failure.

Obstructive Pulmonary Disease

Patients with chronic obstructive pulmonary disease (e.g. chronic bronchitis, emphysema) of mild or moderate severity, bronchospastic disease, or a history of bronchospastic disease (other than bronchial asthma or a history of bronchial asthma which are contraindications) should in general not receive beta-blocking agents.

Major Surgery

The necessity or desirability of withdrawal of beta-adrenergic blocking agents prior to a major surgery is controversial. Beta-adrener-gic receptor blockade impairs the ability of the heart to respond to beta-adrenergically mediated reflex stimuli. This may augment the risk of general anesthesia in surgical procedures. Some patients receiving beta-adrenergic receptor blocking agents have been subject to protracted severe hy-potension during anesthesia. Difficulty in restarting and maintaining the heartbeat has also been reported. For these reasons, in patients undergoing elective surgery, gradual withdrawal of beta-adrenergic receptor blocking agents is recommended. If necessary during surgery, the effects of beta-adrenergic blocking agents may be reversed by sufficient doses of beta-adrenergic agonists.

Diabetes Mellitus

Beta-adrenergic blocking agents should be administered with caution in patients subject to spontaneous hypoglycemia or to diabetic patients (especially those with labile diabetes) who are receiving insulin or oral hypoglycemic agents. Beta-adrenergic receptor blocking agents may mask the signs and symptoms of acute hypoglycemia.

Thyrotoxicosis

Beta-adrenergic blocking agents may mask certain clinical signs (e.g. tachycardia) of hyperthyroidism. Patients suspected of developing thyrotoxicosis should be managed carefully to avoid abrupt withdrawal of beta-adrenergic blocking agents which might precipitate a thyroid storm.

PRECAUTIONS

General

Because of the potential effects of beta-adrenergic blocking agents relative to blood pressure and pulse, these agents should be used with caution in patients with cerebrovascular insufficiency. If signs or symptoms suggesting reduced cerebral blood flow develop following initiation of therapy with Betimol® (timolol ophthalmic solution) , alternative therapy should be considered.

There have been reports of bacterial keratitis associated with the use of multiple dose containers of topical ophthalmic products. These containers had been inadvertently contaminated by patients who, in most cases, had a concurrent corneal disease or a disruption of the ocular epithelial surface. (See PRECAUTIONS: Information For Patients.)

Muscle Weakness: Beta-adrenergic blockade has been reported to potentiate muscle weakness consistent with certain myasthenic symptoms (e.g. diplopia, ptosis, and generalized weakness). Beta-adrenergic blocking agents have been reported rarely to increase muscle weakness in some patients with myasthenia gravis or myasthenic symptoms.

In angle-closure glaucoma, the goal of the treatment is to reopen the angle. This requires constricting the pupil. Betimol® has no effect on the pupil. Therefore, if timolol is used in angle-closure glaucoma, it should always be combined with a miotic and not used alone.

Anaphylaxis: While taking beta-blockers, patients with a history of atopy or a history of severe anaphylactic reactions to a variety of allergens may be more reactive to repeated accidental, diagnostic, or therapeutic challenge with such allergens. Such patients may be unresponsive to the usual doses of epinephrine used to treat anaphylactic reactions.

The preservative benzalkonium chloride may be absorbed by soft contact lenses. Patients who wear soft contact lenses should wait 5 minutes after instilling Betimol® (timolol ophthalmic solution) before they insert their lenses.

Carcinogenesis, Mutagenesis, Impairment of Fertility

Carcinogenicity of timolol (as the maleate) has been studied in mice and rats. In a two-year study orally administrated timolol maleate (300mg/kg/day) (approximately 42,000 times the systemic exposure following the maximum recommended human ophthalmic dose) in male rats caused a significant increase in the incidence of adrenal pheochromocytomas; the lower doses, 25 mg or 100 mg/kg daily did not cause any changes.

In a life span study in mice the overall incidence of neoplasms was significantly increased in female mice at 500 mg/kg/day (approximately 71,000 times the systemic exposure following the maximum recommended human ophthalmic dose). Furthermore, significant increases were observed in the incidences of benign and malignant pulmonary tumors, benign uterine polyps, as well as mammary adenocarcinomas. These changes were not seen at the daily dose level of 5 or 50 mg/kg (approximately 700 or 7,000, respectively, times the systemic exposure following the maximum recommended human ophthalmic dose). For comparison, the maximum recommended human oral dose of timolol maleate is 1 mg/kg/day.

Mutagenic potential of timolol was evaluated in vivo in the micronucleus test and cytogenetic assay and in vitro in the neoplastic cell transformation assay and Ames test, In the bacterial mutagenicity test (Ames test) high concentrations of timolol maleate (5000 and 10,000 g/plate) statistically significantly increased the number of revertants in Salmonella typhimurium TA100, but not in the other three strains tested. However, no consistent dose-response was observed nor did the number of revertants reach the double of the control value, which is regarded as one of the criteria for a positive result in the Ames test. In vivo genotoxicity tests (the mouse micronucleus test and cytogenetic assay) and in vitro the neoplastic cell transformation assay were negative up to dose levels of 800 mg/kg and 100 g/mL, respectively.

No adverse effects on male and female fertility were reported in rats at timolol oral doses of up to 150 mg/kg/day (21,000 times the systemic exposure following the maximum recommended human ophthalmic dose).

Pregnancy Teratogenic effects

Category C: Teratogenicity of timolol (as the maleate) after oral administration was studied in mice and rabbits. No fetal malformations were reported in mice or rabbits at a daily oral dose of 50 mg/kg (7,000 times the systemic exposure following the maximum recommended human ophthalmic dose). Although delayed fetal ossification was observed at this dose in rats, there were no adverse effects on postnatal development of offspring. Doses of 1000 mg/kg/day (142,000 times the systemic exposure following the maximum recommended human ophthalmic dose) were maternotoxic in mice and resulted in an increased number of fetal resorptions. Increased fetal resorptions were also seen in rabbits at doses of 14,000 times the systemic exposure following the maximum recommended human ophthalmic dose in this case without apparent maternotoxicity.

There are no adequate and well-controlled studies in pregnant women. Betimol® (timolol ophthalmic solution) should be used during pregnancy only if the potential benefit justifies the potential risk to the fetus.

Nursing mothers

Because of the potential for serious adverse reactions in nursing infants from timolol, a decision should be made whether to discontinue nursing or to discontinue the drug, taking into account the importance of the drug to the mother.

Pediatric use

Safety and efficacy in pediatric patients have not been established.

Last reviewed on RxList: 3/26/2009
This monograph has been modified to include the generic and brand name in many instances.

Warnings
Precautions
A A A

Report Problems to the Food and Drug Administration

 

You are encouraged to report negative side effects of prescription drugs to the FDA. Visit the FDA MedWatch website or call 1-800-FDA-1088.


WebMD Daily

Get breaking medical news.