June 29, 2016
Recommended Topic Related To:

Breo Ellipta

"The U.S. Food and Drug Administration today approved Adempas (riociguat) to treat adults with two forms of pulmonary hypertension.

Pulmonary hypertension is caused by abnormally high blood pressure in the arteries of the lungs. It make"...

A A A

Breo Ellipta

CLINICAL PHARMACOLOGY

Mechanism Of Action

BREO ELLIPTA

Since BREO ELLIPTA contains both fluticasone furoate and vilanterol, the mechanisms of action described below for the individual components apply to BREO ELLIPTA. These drugs represent 2 different classes of medications (a synthetic corticosteroid and a LABA) that have different effects on clinical and physiological indices.

Fluticasone Furoate

Fluticasone furoate is a synthetic trifluorinated corticosteroid with anti-inflammatory activity. Fluticasone furoate has been shown in vitro to exhibit a binding affinity for the human glucocorticoid receptor that is approximately 29.9 times that of dexamethasone and 1.7 times that of fluticasone propionate. The clinical relevance of these findings is unknown.

The precise mechanism through which fluticasone furoate affects COPD and asthma symptoms is not known. Inflammation is an important component in the pathogenesis of COPD and asthma. Corticosteroids have been shown to have a wide range of actions on multiple cell types (e.g., mast cells, eosinophils, neutrophils, macrophages, lymphocytes) and mediators (e.g., histamine, eicosanoids, leukotrienes, cytokines) involved in inflammation. Specific effects of fluticasone furoate demonstrated in in vitro and in vivo models included activation of the glucocorticoid response element, inhibition of pro-inflammatory transcription factors such as NFkB, and inhibition of antigen-induced lung eosinophilia in sensitized rats. These anti-inflammatory actions of corticosteroids may contribute to their efficacy.

Vilanterol

Vilanterol is a LABA. In vitro tests have shown the functional selectivity of vilanterol was similar to salmeterol. The clinical relevance of this in vitro finding is unknown.

Although beta2-receptors are the predominant adrenergic receptors in bronchial smooth muscle and beta1-receptors are the predominant receptors in the heart, there are also beta2-receptors in the human heart comprising 10% to 50% of the total beta-adrenergic receptors. The precise function of these receptors has not been established, but they raise the possibility that even highly selective beta2-agonists may have cardiac effects.

The pharmacologic effects of beta2-adrenoceptor agonist drugs, including vilanterol, are at least in part attributable to stimulation of intracellular adenyl cyclase, the enzyme that catalyzes the conversion of adenosine triphosphate (ATP) to cyclic-3',5'-adenosine monophosphate (cyclic AMP). Increased cyclic AMP levels cause relaxation of bronchial smooth muscle and inhibition of release of mediators of immediate hypersensitivity from cells, especially from mast cells.

Pharmacodynamics

Cardiovascular Effects

Healthy Subjects: QTc interval prolongation was studied in a double-blind, multiple-dose, placebo-and positive-controlled crossover study in 85 healthy volunteers. The maximum mean (95% upper confidence bound) difference in QTcF from placebo after baseline-correction was 4.9 (7.5) milliseconds and 9.6 (12.2) milliseconds seen 30 minutes after dosing for fluticasone furoate/vilanterol 200 mcg/25 mcg and fluticasone furoate/vilanterol 800 mcg/100 mcg, respectively.

A dose-dependent increase in heart rate was also observed. The maximum mean (95% upper confidence bound) difference in heart rate from placebo after baseline-correction was 7.8 (9.4) beats/min and 17.1 (18.7) beats/min seen 10 minutes after dosing for fluticasone furoate/vilanterol 200 mcg/25 mcg and fluticasone furoate/vilanterol 800 mcg/100 mcg, respectively.

HPA Axis Effects

Healthy Subjects: Inhaled fluticasone furoate at repeat doses up to 400 mcg was not associated with statistically significant decreases in serum or urinary cortisol in healthy subjects. Decreases in serum and urine cortisol levels were observed at fluticasone furoate exposures several-fold higher than exposures observed at the therapeutic dose.

Subjects with Chronic Obstructive Pulmonary Disease: In a trial with subjects with COPD, treatment with fluticasone furoate (50, 100, or 200 mcg)/vilanterol 25 mcg, vilanterol 25 mcg, and fluticasone furoate (100 or 200 mcg) for 6 months did not affect 24-hour urinary cortisol excretion. A separate trial with subjects with COPD demonstrated no effects on serum cortisol after 28 days of treatment with fluticasone furoate (50, 100, or 200 mcg)/vilanterol 25 mcg.

Subjects with Asthma: A randomized, double-blind, parallel-group trial in 185 subjects with asthma showed no difference between once-daily treatment with fluticasone furoate/vilanterol 100 mcg/25 mcg or fluticasone furoate/vilanterol 200 mcg/25 mcg compared with placebo on serum cortisol weighted mean (0 to 24 hours), serum cortisol AUC(0-24), and 24-hour urinary cortisol after 6 weeks of treatment, whereas prednisolone 10 mg given once daily for 7 days resulted in significant cortisol suppression.

Pharmacokinetics

Linear pharmacokinetics was observed for fluticasone furoate (200 to 800 mcg) and vilanterol (25 to 100 mcg). On repeated once-daily inhalation administration, steady state of fluticasone furoate and vilanterol plasma concentrations was achieved after 6 days, and the accumulation was up to 2.6-fold for fluticasone furoate and 2.4-fold for vilanterol as compared with single dose.

Absorption

Fluticasone Furoate: Fluticasone furoate plasma levels may not predict therapeutic effect. Peak plasma concentrations are reached within 0.5 to 1 hour. Absolute bioavailability of fluticasone furoate when administrated by inhalation was 15.2%, primarily due to absorption of the inhaled portion of the dose delivered to the lung. Oral bioavailability from the swallowed portion of the dose is low (approximately 1.3%) due to extensive first-pass metabolism. Systemic exposure (AUC) in subjects with COPD or asthma was 46% or 7% lower, respectively, than observed in healthy subjects.

Vilanterol: Vilanterol plasma levels may not predict therapeutic effect. Peak plasma concentrations are reached within 10 minutes following inhalation. Absolute bioavailability of vilanterol when administrated by inhalation was 27.3%, primarily due to absorption of the inhaled portion of the dose delivered to the lung. Oral bioavailability from the swallowed portion of the dose of vilanterol is low (less than 2%) due to extensive first-pass metabolism. Systemic exposure (AUC) in subjects with COPD was 24% higher than observed in healthy subjects. Systemic exposure (AUC) in subjects with asthma was 21% lower than observed in healthy subjects.

Distribution

Fluticasone Furoate: Following intravenous administration to healthy subjects, the mean volume of distribution at steady state was 661 L. Binding of fluticasone furoate to human plasma proteins was high (99.6%).

Vilanterol: Following intravenous administration to healthy subjects, the mean volume of distribution at steady state was 165 L. Binding of vilanterol to human plasma proteins was 93.9%.

Metabolism

Fluticasone Furoate: Fluticasone furoate is cleared from systemic circulation principally by hepatic metabolism via CYP3A4 to metabolites with significantly reduced corticosteroid activity. There was no in vivo evidence for cleavage of the furoate moiety resulting in the formation of fluticasone.

Vilanterol: Vilanterol is mainly metabolized, principally via CYP3A4, to a range of metabolites with significantly reduced β1-and β2-agonist activity.

Elimination

Fluticasone Furoate: Fluticasone furoate and its metabolites are eliminated primarily in the feces, accounting for approximately 101% and 90% of the orally and intravenously administered doses, respectively. Urinary excretion accounted for approximately 1% and 2% of the orally and intravenously administered doses, respectively. Following repeat-dose inhaled administration, the plasma elimination phase half-life averaged 24 hours.

Vilanterol: Following oral administration, vilanterol was eliminated mainly by metabolism followed by excretion of metabolites in urine and feces (approximately 70% and 30% of the recovered radioactive dose, respectively). The plasma elimination half-life of vilanterol, as determined from inhalation administration of multiple doses of vilanterol 25 mcg, is 21.3 hours in subjects with COPD and 16.0 hours in subjects with asthma.

Special Populations

The effect of renal and hepatic impairment and other intrinsic factors on the pharmacokinetics of fluticasone furoate and vilanterol is shown in Figure 1.

Figure 1: Impact of Intrinsic Factors on the Pharmacokinetics (PK) of Fluticasone Furoate (FF) and Vilanterol (VI) Following Administration as Fluticasone Furoate/Vilanterol Combination

Impact of Intrinsic Factors - Illustration

a Severe renal impairment (CrCl less than 30 mL/min) compared with healthy subjects; mild (Child-Pugh A), moderate (Child-Pugh B), and severe (Child-Pugh C) hepatic impairment compared with healthy subjects.

b For COPD and asthma, the following comparisons were made: age compared with less than or equal to 65 years, gender compared with female, and ethnicity compared with white.

Race: Systemic exposure [AUC(0-24)] to inhaled fluticasone furoate 200 mcg was 27% to 49% higher in healthy subjects of Japanese, Korean, and Chinese heritage compared with white subjects. Similar differences were observed for subjects with COPD or asthma (Figure 1). However, there is no evidence that this higher exposure to fluticasone furoate results in clinically relevant effects on urinary cortisol excretion or on efficacy in these racial groups.

There was no effect of race on the pharmacokinetics of vilanterol in subjects with COPD. In subjects with asthma, vilanterol Cmax is estimated to be higher (3-fold) and AUC(0-24) comparable for those subjects from an Asian heritage compared with subjects from a non-Asian heritage. However, the higher Cmax values are similar to those seen in healthy subjects.

Hepatic Impairment: Fluticasone Furoate: Following repeat dosing of fluticasone furoate/vilanterol 200 mcg/25 mcg (100 mcg/12.5 mcg in the severe impairment group) for 7 days, there was an increase of 34%, 83%, and 75% in fluticasone furoate systemic exposure (AUC) in subjects with mild, moderate, and severe hepatic impairment, respectively, compared with healthy subjects (Figure 1).

In subjects with moderate hepatic impairment receiving fluticasone furoate/vilanterol 200 mcg/25 mcg, mean serum cortisol (0 to 24 hours) was reduced by 34% (90% CI: 11%, 51%) compared with healthy subjects. In subjects with severe hepatic impairment receiving fluticasone furoate/vilanterol 100 mcg/12.5 mcg, mean serum cortisol (0 to 24 hours) was increased by 14% (90% CI: -16%, 55%) compared with healthy subjects. Patients with moderate to severe hepatic disease should be closely monitored.

Vilanterol: Hepatic impairment had no effect on vilanterol systemic exposure [Cmax and AUC(0-24) on Day 7] following repeat-dose administration of fluticasone furoate/vilanterol 200 mcg/25 mcg (100 mcg/12.5 mcg in the severe impairment group) for 7 days (Figure 1).

There were no additional clinically relevant effects of the fluticasone furoate/vilanterol combinations on heart rate or serum potassium in subjects with mild or moderate hepatic impairment (vilanterol 25 mcg combination) or with severe hepatic impairment (vilanterol 12.5 mcg combination) compared with healthy subjects.

Renal Impairment: Fluticasone furoate systemic exposure was not increased and vilanterol systemic exposure [AUC(0-24)] was 56% higher in subjects with severe renal impairment compared with healthy subjects (Figure 1). There was no evidence of greater corticosteroid or beta-agonist class-related systemic effects (assessed by serum cortisol, heart rate, and serum potassium) in subjects with severe renal impairment compared with healthy subjects.

Drug Interactions

There were no clinically relevant differences in the pharmacokinetics or pharmacodynamics of either fluticasone furoate or vilanterol when administered in combination compared with administration alone. The potential for fluticasone furoate and vilanterol to inhibit or induce metabolic enzymes and transporter systems is negligible at low inhalation doses.

Inhibitors of Cytochrome P450 3A4: The exposure (AUC) of fluticasone furoate and vilanterol were 36% and 65% higher, respectively, when coadministered with ketoconazole 400 mg compared with placebo (Figure 2). The increase in fluticasone furoate exposure was associated with a 27% reduction in weighted mean serum cortisol (0 to 24 hours). The increase in vilanterol exposure was not associated with an increase in beta-agonist–related systemic effects on heart rate or blood potassium.

Figure 2: Impact of Coadministered Drugsa on the Pharmacokinetics (PK) of Fluticasone Furoate (FF) and Vilanterol (VI) Following Administration as Fluticasone Furoate/Vilanterol Combination or Vilanterol Coadministered with a Long-Acting Muscarinic Antagonist

Impact of Coadministered Drugsa on the Pharmacokinetics (PK) of Fluticasone Furoate (FF) and Vilanterol (VI) - Illustration

a Compared with placebo group.

Inhibitors of P-glycoprotein: Fluticasone furoate and vilanterol are both substrates of P-glycoprotein (P-gp). Coadministration of repeat-dose (240 mg once daily) verapamil (a potent P-gp inhibitor and moderate CYP3A4 inhibitor) did not affect the vilanterol Cmax or AUC in healthy subjects (Figure 2). Drug interaction trials with a specific P-gp inhibitor and fluticasone furoate have not been conducted.

Clinical Studies

Chronic Obstructive Pulmonary Disease

The safety and efficacy of BREO ELLIPTA were evaluated in 7,700 subjects with COPD. The development program included 4 confirmatory trials of 6 and 12 months' duration, three 12-week active comparator trials with fluticasone propionate/salmeterol 250 mcg/50 mcg, and dose-ranging trials of shorter duration. The efficacy of BREO ELLIPTA is based primarily on the dose-ranging trials and the 4 confirmatory trials described below.

Dose Selection For Vilanterol

Dose selection for vilanterol in COPD was supported by a 28-day, randomized, double-blind, placebo-controlled, parallel-group trial evaluating 5 doses of vilanterol (3 to 50 mcg) or placebo dosed in the morning in 602 subjects with COPD. Results demonstrated dose-related increases from baseline in FEV1 at Day 1 and Day 28 (Figure 3).

Figure 3: Least Squares (LS) Mean Change from Baseline in Postdose Serial FEV1 (0-24 h) (mL) on Days 1 and 28

Least Squares (LS) Mean Change from Baseline - Illustration

The differences in trough FEV1 on Day 28 from placebo for the 3-, 6.25-, 12.5-, 25-, and 50-mcg doses were 92 mL (95% CI: 39, 144), 98 mL (95% CI: 46, 150), 110 mL (95% CI: 57, 162), 137 mL (95% CI: 85, 190), and 165 mL (95% CI: 112, 217), respectively. These results supported the evaluation of vilanterol 25 mcg once daily in the confirmatory trials for COPD.

Dose Selection For Fluticasone Furoate

Dose selection of fluticasone furoate for Phase III trials in subjects with COPD was based on dose-ranging trials conducted in subjects with asthma; these trials are described in detail below [see Clinical Studies].

Confirmatory Trials

The 4 confirmatory trials evaluated the efficacy of BREO ELLIPTA on lung function (Trials 1 and 2) and exacerbations (Trials 3 and 4).

Lung Function: Trials 1 and 2 were 24-week, randomized, double-blind, placebo-controlled trials designed to evaluate the efficacy of BREO ELLIPTA on lung function in subjects with COPD. In Trial 1, subjects were randomized to BREO ELLIPTA 100/25, BREO ELLIPTA 200/25, fluticasone furoate 100 mcg, fluticasone furoate 200 mcg, vilanterol 25 mcg, and placebo. In Trial 2, subjects were randomized to BREO ELLIPTA 100/25, fluticasone furoate/vilanterol 50 mcg/25 mcg, fluticasone furoate 100 mcg, vilanterol 25 mcg, and placebo. All treatments were administered as 1 inhalation once daily.

Of the 2,254 patients, 70% were male and 84% were white. They had a mean age of 62 years and an average smoking history of 44 pack-years, with 54% identified as current smokers. At screening, the mean postbronchodilator percent predicted FEV1 was 48% (range: 14% to 87%), mean postbronchodilator FEV1/FVC ratio was 47% (range: 17% to 88%), and the mean percent reversibility was 14% (range: -41% to 152%).

The co-primary efficacy variables in both trials were weighted mean FEV1 (0 to 4 hours) postdose on Day 168 and change from baseline in trough FEV1 on Day 169 (the mean of the FEV1 values obtained 23 and 24 hours after the final dose on Day 168). The weighted mean comparison of the fluticasone furoate/vilanterol combination with fluticasone furoate was assessed to evaluate the contribution of vilanterol to BREO ELLIPTA. The trough FEV1 comparison of the fluticasone furoate/vilanterol combination with vilanterol was assessed to evaluate the contribution of fluticasone furoate to BREO ELLIPTA.

BREO ELLIPTA 100/25 demonstrated a larger increase in the weighted mean FEV1 (0 to 4 hours) relative to placebo and fluticasone furoate 100 mcg at Day 168 (Table 4).

Table 4: Least Squares Mean Change from Baseline in Weighted Mean FEV1 (0-4 h) and Trough FEV1 at 6 Months

Treatment n Weighted Mean FEV1 (0-4 h)a (mL) Trough FEV1b (mL)
Difference from Difference from
Placebo (95% CI) Fluticasone Furoate 100 mcg (95% CI) Fluticasone Furoate 200 mcg (95% CI) Placebo (95% CI) Vilanterol 25 mcg (95% CI)
Trial 1
BREO ELLIPTA 100/25 204 214 (161, 266) 168 (116, 220) 144 (91, 197) 45 (-8, 97)
BREO ELLIPTA 200/25 205 209 (157, 261) 168 (117, 219) 131 (80, 183) 32 (-19, 83)
Trial 2
BREO ELLIPTA 100/25 206 173 (123, 224) 120 (70, 170) 115 (60, 169) 48 (-6, 102)
a At Day 168.
b At Day 169.

Serial spirometric evaluations were performed predose and up to 4 hours after dosing. Results from Trial 1 at Day 1 and Day 168 are shown in Figure 4. Similar results were seen in Trial 2 (not shown).

Figure 4: Raw Mean Change from Baseline in Postdose Serial FEV1 (0-4 h) (mL) on Days 1 and 168

Raw Mean Change from Baseline - Illustration

The second co-primary variable was change from baseline in trough FEV1 following the final treatment day. At Day 169, both Trials 1 and 2 demonstrated significant increases in trough FEV1 for all strengths of the fluticasone furoate/vilanterol combination compared with placebo (Table 4). The comparison of BREO ELLIPTA 100/25 with vilanterol did not achieve statistical significance (Table 4).

Trials 1 and 2 evaluated FEV1 as a secondary endpoint. Peak FEV1 was defined as the maximum postdose FEV1 recorded within 4 hours after the first dose of trial medicine on Day 1 (measurements recorded at 5, 15, and 30 minutes and 1, 2, and 4 hours). In both trials, differences in mean change from baseline in peak FEV1 were observed for the groups receiving BREO ELLIPTA 100/25 compared with placebo (152 and 139 mL, respectively). The median time to onset, defined as a 100-mL increase from baseline in FEV1, was 16 minutes in subjects receiving BREO ELLIPTA 100/25.

Exacerbations: Trials 3 and 4 were randomized, double-blind, 52-week trials designed to evaluate the effect of BREO ELLIPTA on the rate of moderate and severe COPD exacerbations. All subjects were treated with fluticasone propionate/salmeterol 250 mcg/50 mcg twice daily during a 4-week run-in period prior to being randomly assigned to 1 of the following treatment groups: BREO ELLIPTA 100/25, BREO ELLIPTA 200/25, fluticasone furoate/vilanterol 50 mcg/25 mcg, or vilanterol 25 mcg.

The primary efficacy variable in both trials was the annual rate of moderate/severe exacerbations. The comparison of the fluticasone furoate/vilanterol combination with vilanterol was assessed to evaluate the contribution of fluticasone furoate to BREO ELLIPTA. In these 2 trials, exacerbations were defined as worsening of 2 or more major symptoms (dyspnea, sputum volume, and sputum purulence) or worsening of any 1 major symptom together with any 1 of the following minor symptoms: sore throat, colds (nasal discharge and/or nasal congestion), fever without other cause, and increased cough or wheeze for at least 2 consecutive days. COPD exacerbations were considered to be of moderate severity if treatment with systemic corticosteroids and/or antibiotics was required and were considered to be severe if hospitalization was required.

Trials 3 and 4 included 3,255 subjects, of which 57% were male and 85% were white. They had a mean age of 64 years and an average smoking history of 46 pack-years, with 44% identified as current smokers. At screening, the mean postbronchodilator percent predicted FEV1 was 45% (range: 12% to 91%), and mean postbronchodilator FEV1/FVC ratio was 46% (range: 17% to 81%), indicating that the subject population had moderate to very severely impaired airflow obstruction. The mean percent reversibility was 15% (range: -65% to 313%).

Subjects treated with BREO ELLIPTA 100/25 had a lower annual rate of moderate/severe COPD exacerbations compared with vilanterol in both trials (Table 5).

Table 5: Moderate and Severe Chronic Obstructive Pulmonary Disease Exacerbations

Treatment n Mean Annual Rate (exacerbations/ year) Ratio vs. Vilanterol 95% CI
Trial 3
BREO ELLIPTA 100/25 403 0.90 0.79 0.64, 0.97
BREO ELLIPTA 200/25 409 0.79 0.69 0.56, 0.85
Fluticasone furoate/vilanterol 50 mcg/25 mcg 412 0.92 0.81 0.66, 0.99
Vilanterol 25 mcg 409 1.14 -
Trial 4
BREO ELLIPTA 100/25 403 0.70 0.66 0.54, 0.81
BREO ELLIPTA 200/25 402 0.90 0.85 0.70, 1.04
Fluticasone furoate/vilanterol 50 mcg/25 mcg 408 0.92 0.87 0.72, 1.06
Vilanterol 25 mcg 409 1.05

Comparator Trials

Three 12-week, randomized, double-blind, double-dummy trials were conducted with BREO ELLIPTA 100/25 once daily versus fluticasone propionate/salmeterol 250 mcg/50 mcg twice daily to evaluate the efficacy of serial lung function of BREO ELLIPTA in subjects with COPD.

The primary endpoint of each study was change from baseline in weighted mean FEV1 (0 to 24 hours) on Day 84. Of the 519 patients in Trial 5, 64% were male and 97% were white; mean age was 61 years; average smoking history was 40 pack-years, with 55% identified as current smokers. At screening in the treatment group using BREO ELLIPTA 100/25, the mean postbronchodilator percent predicted FEV1 was 48% (range: 19% to 70%), the mean (SD) FEV1/FVC ratio was 0.51 (0.11), and the mean percent reversibility was 11% (range: -12% to 83%). At screening in the treatment group using fluticasone propionate/salmeterol 250 mcg/50 mcg, the mean postbronchodilator percent predicted FEV1 was 47% (range: 14% to 71%), the mean (SD) FEV1/FVC ratio was 0.49 (0.10), and the mean percent reversibility was 11% (range: -13% to 50%).

Of the 511 patients in Trial 6, 68% were male and 94% were white; mean age was 62 years; average smoking history was 35 pack-years, with 52% identified as current smokers. At screening in the treatment group using BREO ELLIPTA 100/25, the mean postbronchodilator percent predicted FEV1 was 48% (range: 18% to 70%), the mean (SD) FEV1/FVC ratio was 0.51 (0.10), and the mean percent reversibility was 12% (range: -56% to 77%). At screening in the treatment group using fluticasone propionate/salmeterol 250 mcg/50 mcg, the mean postbronchodilator percent predicted FEV1 was 49% (range: 15% to 70%), the mean (SD) FEV1/FVC ratio was 0.50 (0.10), and the mean percent reversibility was 12% (range: -66% to 72%).

Of the 828 patients in Trial 7, 72% were male and 98% were white; mean age was 61 years; average smoking history was 38 pack-years, with 60% identified as current smokers. At screening in the treatment group using BREO ELLIPTA 100/25, the mean postbronchodilator percent predicted FEV1 was 48% (range: 18% to 70%), the mean (SD) FEV1/FVC ratio was 0.52 (0.10), and the mean percent reversibility was 12% (range: -26% to 84%). At screening in the treatment group using fluticasone propionate/salmeterol 250 mcg/50 mcg, the mean postbronchodilator percent predicted FEV1 was 48% (range: 16% to 70%), the mean (SD) FEV1/FVC ratio was 0.51 (0.10), and the mean percent reversibility was 12% (range: -15% to 67%).

In Trial 5, the mean (SE) change from baseline in weighted mean FEV1 (0 to 24 hours) with BREO ELLIPTA 100/25 was 174 (15) mL compared with 94 (16) mL with fluticasone propionate/salmeterol 250 mcg/50 mcg (treatment difference 80 mL; 95% CI: 37, 124; P < 0.001). In Trials 6 and 7, the mean (SE) change from baseline in weighted mean FEV1 (0 to 24 hours) with BREO ELLIPTA 100/25 was 142 (18) mL and 168 (12) mL, respectively, compared with 114 (18) mL and 142 (12) mL, respectively, for fluticasone propionate/salmeterol 250 mcg/50 mcg (Trial 6 treatment difference 29 mL; 95% CI: -22, 80; P = 0.267; Trial 7 treatment difference 25 mL; 95% CI: -8, 59; P = 0.137).

Asthma

The safety and efficacy of BREO ELLIPTA were evaluated in 9,969 subjects with asthma. The development program included 4 confirmatory trials (2 of 12 weeks' duration, 1 of 24 weeks' duration, 1 exacerbation trial of 24 to 76 weeks' duration), one 24-week active comparator trial with fluticasone propionate/salmeterol 250 mcg/50 mcg, and dose-ranging trials of shorter duration. The efficacy of BREO ELLIPTA is based primarily on the dose-ranging trials and the 4 confirmatory trials described below.

Dose Selection For Vilanterol

Dose selection for vilanterol in asthma was supported by a 28-day, randomized, double-blind, placebo-controlled, parallel-group trial evaluating 5 doses of vilanterol (3 to 50 mcg) or placebo dosed in the evening in 607 subjects with asthma. Results demonstrated dose-related increases from baseline in FEV1 at Day 1 and Day 28 (Figure 5).

Figure 5: Least Squares (LS) Mean Change from Baseline in Postdose Serial FEV1 (0-24 h) (mL) on Days 1 and 28

Least Squares (LS) Mean Change from Baseline - Illustration

The differences in trough FEV1 on Day 28 from placebo for the 3-, 6.25-, 12.5-, 25-, and 50-mcg doses were 64 mL (95% CI: -36, 164), 69 mL (95% CI: -29, 168), 130 mL (95% CI: 30, 230), 121 mL (95% CI: 23, 220), and 162 mL (95% CI: 62, 261), respectively. These results and results of the secondary endpoints supported the evaluation of vilanterol 25 mcg once daily in the confirmatory trials for asthma.

Dose Selection For Fluticasone Furoate

Eight doses of fluticasone furoate ranging from 25 to 800 mcg once daily were evaluated in 3 randomized, double-blind, placebo-controlled, 8-week trials in subjects with asthma. A dose-related increase in trough FEV1 at Week 8 was seen for doses from 25 to 200 mcg with no consistent additional benefit for doses above 200 mcg. To evaluate dosing frequency, a separate trial compared fluticasone furoate 200 mcg once daily and fluticasone furoate 100 mcg twice daily. The results supported the selection of the once-daily dosing frequency (Figure 6).

Figure 6: Fluticasone Furoate Dose-Ranging and Dose-Frequency Trials

Fluticasone Furoate Dose-Ranging and Dose-Frequency Trials - Illustration

F = fluicasouoae, F = fluicasorooate, D = oncaly, BID = twicaly.

Confirmatory Trials

The efficacy of BREO ELLIPTA was evaluated in 4 randomized, double-blind, parallel-group clinical trials in adolescent and adult subjects with asthma. Three trials were designed to evaluate the safety and efficacy of BREO ELLIPTA given once daily in subjects who were not controlled on their current treatments of inhaled corticosteroid or combination therapy consisting of an inhaled corticosteroid plus a LABA (Trials 1, 2, and 3). A 24-to 76-week exacerbation trial was designed to demonstrate that treatment with BREO ELLIPTA 100/25 significantly decreased the risk of asthma exacerbations as measured by time to first asthma exacerbation when compared with fluticasone furoate 100 mcg (Trial 5). This trial enrolled subjects who had one or more asthma exacerbations in the year prior to trial entry. The demographics of these 4 trials and the comparator trial (Trial 6) are provided in Table 6. While subjects aged 12 to 17 years were included in these trials, BREO ELLIPTA is not approved for use in this age-group [see INDICATIONS, ADVERSE REACTIONS, Use In Specific Populations].

Table 6: Demography of Asthma Trials 1, 2, 3, 5, and 6

Parameter Trial 1
n = 609
Trial 2
n = 1,039
Trial 3
n = 586
Trial 5
n = 2,019
Trial 6
n = 806
Mean age (years) (range) 40
(12, 84)
46
(12, 82)
46
(12, 76)
42
(12, 82)
43
(12, 80)
Female (%) 58 60 59 67 61
White (%) 84 88 84 73 59
Duration of asthma (years) 12 18 16 16 21
Never smokeda (%) N/A 84 N/A 86 81
Predose FEV1 (L) at baseline 2.32 1.97 2.15 2.20 2.03
Mean percent predicted FEV1 at baseline (%) 70 62 67 72 68
% Reversibility 29 30 29 24 28
Absolute reversibility (mL) 614 563 571 500 512
N/A = Data not collected.
a Trials did not include current smokers; past smokers had less than 10 packs per year history.

Trials 1, 2, and 3 were 12-or 24-week trials that evaluated the efficacy of BREO ELLIPTA on lung function in subjects with asthma. In Trial 1, subjects were randomized to BREO ELLIPTA 100/25, fluticasone furoate 100 mcg, or placebo. In Trial 2, subjects were randomized to BREO ELLIPTA 100/25, BREO ELLIPTA 200/25, or fluticasone furoate 100 mcg. In Trial 3, subjects were randomized to BREO ELLIPTA 200/25, fluticasone furoate 200 mcg, or fluticasone propionate 500 mcg. All inhalations were administered once daily, with the exception of fluticasone propionate, which was administered twice daily. Subjects receiving an inhaled corticosteroid or an inhaled corticosteroid plus a LABA (doses of inhaled corticosteroid varied by trial and asthma severity) entered a 4-week run-in period during which LABA treatment was stopped. Subjects reporting symptoms and/or rescue beta2-agonist medication use during the run-in period were continued in the trial.

In Trials 1 and 3, change from baseline in weighted mean FEV1 (0 to 24 hours) and change from baseline in trough FEV1 at approximately 24 hours after the last dose at study endpoint (12 and 24 weeks, respectively) were co-primary efficacy endpoints. In Trial 2, change from baseline in weighted mean FEV1 (0 to 24 hours) at Week 12 was the primary efficacy endpoint; change from baseline in trough FEV1 at approximately 24 hours after the last dose at Week 12 was a secondary endpoint. (See Table 7.) Weighted mean FEV1 (0 to 24 hours) was derived from serial measurements taken within 30 minutes prior to dosing and postdose assessments at 5, 15, and 30 minutes and 1, 2, 3, 4, 5, 12, 16, 20, 23, and 24 hours after the final dose. Other secondary endpoints included change from baseline in percentage of rescue-free 24-hour periods and percentage of symptom-free 24-hour periods over the treatment period.

Table 7: Change from Baseline in Weighted Mean FEV1 (0-24 h) (mL) and Trough FEV1 (mL) at Study Endpoint (Trials 1, 2, and 3)

Study (Duration) Background Treatment n Weighted Mean FEV1 (0-24 h) (mL)
Difference from
Placebo (95% CI) Fluticasone Furoate 100 mcg (95% CI) Fluticasone Furoate 200 mcg (95% CI)
Treatment
Trial 1 (12 Weeks) Low- to mid-dose ICS or low-dose ICS + LABA
BREO ELLIPTA 100/25 108 302
(178, 426)
116
(-5, 236)
Trial 2 (12 Weeks) Mid- to high-dose ICS or mid-dose ICS + LABA
BREO ELLIPTA 100/25 312 108
(45, 171)
Trial 3 (24 Weeks) High-dose ICS or mid-dose ICS + LABA
BREO ELLIPTA 200/25 89 136
(1, 270)
Study (Duration) Background Treatment n Trough FEV1 (mL) Difference from
Placebo (95% CI) Fluticasone Furoate 100 mcg (95% CI) Fluticasone Furoate 200 mcg (95% CI)
Treatment
Trial 1 (12 Weeks) Low- to mid-dose ICS or low-dose ICS + LABA
BREO ELLIPTA 100/25 200 172 (87, 258) 36 (-48, 120)
Trial 2 (12 Weeks) Mid- to high-dose ICS or mid-dose ICS + LABA
BREO ELLIPTA 100/25 334 77 (16, 138)
Trial 3 (24 Weeks) High-dose ICS or mid-dose ICS + LABA
BREO ELLIPTA 200/25 187 193 (108, 277)
ICS = inhaled corticosteroid, LABA = long-acting beta2-adrenergic agonist.

In Trial 1, weighted mean FEV1 (0 to 24 hours) was assessed in a subset of subjects (n = 309). At Week 12, change from baseline in weighted mean FEV1 (0 to 24 hours) was significantly greater for BREO ELLIPTA 100/25 compared with placebo (302 mL; 95% CI: 178, 426; P < 0.001) (Table 7); change from baseline in weighted mean FEV1 (0 to 24 hours) for BREO ELLIPTA 100/25 was numerically greater than fluticasone furoate 100 mcg, but not statistically significant (116 mL; 95% CI: -5, 236). At Week 12, change from baseline in trough FEV1 was significantly greater for BREO ELLIPTA 100/25 compared with placebo (172 mL; 95% CI: 87, 258; P < 0.001) (Table 7); change from baseline in trough FEV1 for BREO ELLIPTA 100/25 was numerically greater than fluticasone furoate 100 mcg, but not statistically significant (36 mL; 95% CI: -48, 120).

In Trial 2, the change from baseline in weighted mean FEV1 (0 to 24 hours) was significantly greater for BREO ELLIPTA 100/25 compared with fluticasone furoate 100 mcg (108 mL; 95% CI: 45, 171; P < 0.001) at Week 12 (Table 7). In a descriptive analysis, the change from baseline in weighted mean FEV1 (0 to 24 hours) for BREO ELLIPTA 200/25 was numerically greater than BREO ELLIPTA 100/25 (24 mL; 95% CI: -37, 86) at Week 12. The change from baseline in trough FEV1 was significantly greater for BREO ELLIPTA 100/25 compared with fluticasone furoate 100 mcg (77 mL, 95% CI: 16, 138; P = 0.014) at Week 12 (Table 7). In a descriptive analysis, the change from baseline in trough FEV1 for BREO ELLIPTA 200/25 was numerically greater than BREO ELLIPTA 100/25 (16 mL; 95% CI: -46, 77) at Week 12.

In Trial 3, the change from baseline in weighted mean FEV1 (0 to 24 hours) was significantly greater for BREO ELLIPTA 200/25 compared with fluticasone furoate 200 mcg (136 mL; 95% CI: 1, 270; P = 0.048) at Week 24 (Table 7). The change from baseline in trough FEV1 was significantly greater for BREO ELLIPTA 200/25 compared with fluticasone furoate 200 mcg (193 mL, 95% CI: 108, 277; P < 0.001) at Week 24.

Lung function improvements were demonstrated through weighted mean FEV1 (0 to 24 hours) over the 24-hour period following the final dose of BREO ELLIPTA in Trials 2 and 3. Serial FEV1 measurements were taken within 30 minutes prior to dosing and postdose assessments at 5, 15, and 30 minutes and 1, 2, 3, 4, 5, 12, 16, 20, 23, and 24 hours in Trials 1, 2, and 3. A representative figure is shown from Trial 2 in Figure 7.

Figure 7: Least Squares (LS) Mean Change from Baseline in Individual Serial FEV1 (mL) Assessments over 24 Hours after 12 Weeks of Treatment (Trial 2)

Least Squares (LS) Mean Change from Baseline in Individual Serial FEV1 - Illustration

Subjects receiving BREO ELLIPTA 100/25 (Trial 2) or BREO ELLIPTA 200/25 (Trial 3) had significantly greater improvements from baseline in percentage of 24-hour periods without need of beta2-agonist rescue medication use and percentage of 24-hour periods without asthma symptoms compared with subjects receiving fluticasone furoate 100 mcg or fluticasone furoate 200 mcg, respectively. In a descriptive analysis (Trial 2), subjects receiving BREO ELLIPTA 200/25 had numerical improvements from baseline in percentage of 24-hour periods without need of beta2-agonist rescue medication use and percentage of 24-hour periods without asthma symptoms compared with subjects receiving BREO ELLIPTA 100/25.

Trial 5 was a 24-to 76-week event-driven exacerbation trial that evaluated whether BREO ELLIPTA 100/25 significantly decreased the risk of asthma exacerbations as measured by time to first asthma exacerbation when compared with fluticasone furoate 100 mcg in subjects with asthma. Subjects receiving low-to high-dose inhaled corticosteroid (fluticasone propionate 100 mcg to 500 mcg twice daily or equivalent) or low-to mid-dose inhaled corticosteroid plus a LABA (fluticasone propionate/salmeterol 100 mcg/50 mcg to 250 mcg/50 mcg twice daily or equivalent) and a history of 1 or more asthma exacerbations that required treatment with oral/systemic corticosteroid or emergency department visit or in-patient hospitalization for the treatment of asthma in the year prior to trial entry, entered a 2-week run-in period during which LABA treatment was stopped. Subjects reporting symptoms and/or rescue beta2-agonist medication use during the run-in period were continued in the trial.

The primary endpoint was time to first asthma exacerbation. Asthma exacerbation was defined as deterioration of asthma requiring the use of systemic corticosteroid for at least 3 days or an in-patient hospitalization or emergency department visit due to asthma that required systemic corticosteroid. Rate of asthma exacerbation was a secondary endpoint. The hazard ratio from the Cox Model for the analysis of time to first asthma exacerbation for BREO ELLIPTA 100/25 compared with fluticasone furoate 100 mcg was 0.795 (95% CI: 0.642, 0.985). This represents a 20% reduction in the risk of experiencing an asthma exacerbation for subjects treated with BREO ELLIPTA 100/25 compared with fluticasone furoate 100 mcg (P = 0.036). Mean yearly rates of asthma exacerbations of 0.14 and 0.19 in subjects treated with BREO ELLIPTA 100/25 compared with fluticasone furoate 100 mcg, respectively, were observed (25% reduction in rate; 95% CI: 5%, 40%).

Comparator Trial

Trial 6 was a 24-week trial that compared the efficacy of BREO ELLIPTA 100/25 once daily with fluticasone propionate/salmeterol 250 mcg/50 mcg twice daily (N = 806). Subjects receiving mid-dose inhaled corticosteroid (fluticasone propionate 250 mcg twice daily or equivalent) entered a 4-week run-in period during which all subjects received fluticasone propionate 250 mcg twice daily. The primary endpoint was change from baseline in weighted mean FEV1 (0 to 24 hours) at Week 24.

The mean change (SE) from baseline in weighted mean FEV1 (0 to 24 hours) for BREO ELLIPTA 100/25 was 341 (18.4) mL compared with 377 (18.5) mL for fluticasone propionate/salmeterol 250 mcg/50 mcg (treatment difference -37 mL; 95% CI: -88, 15; P = 0.162).

Last reviewed on RxList: 4/4/2016
This monograph has been modified to include the generic and brand name in many instances.

Report Problems to the Food and Drug Administration

 

You are encouraged to report negative side effects of prescription drugs to the FDA. Visit the FDA MedWatch website or call 1-800-FDA-1088.


Women's Health

Find out what women really need.