May 31, 2016
Recommended Topic Related To:

Calcijex

"A drug candidate developed by researchers at the NIH's National Center for Advancing Translational Sciences (NCATS) and its collaborators to treat sickle cell disease has been acquired by Baxter International's BioScience business. The drug c"...

A A A

Calcijex Injection




CLINICAL PHARMACOLOGY

Action And Clinical Pharmacology

Mechanism Of Action

There is evidence that calcitriol (1,25-(OH)2 D3) is the biologically active form of vitamin D responsible, in part, for maintaining calcium and phosphorous homeostasis.

Calcitriol stimulates the intestinal transport of calcium. The active transport of calcium occurs primarily in the duodenum. Although the exact mechanism by which this occurs is uncertain, most evidence suggests that calcitriol enhances calcium movement across the brush border into the intestinal cells. Evidence further suggests that a specific calcium-binding protein, which is stimulated by calcitriol, acts to augment the entry of calcium into the cell. In addition, calcitriol may exert a nuclear effect by directing the synthesis of messenger RNA which in turn stimulates the synthesis of new proteins which are thought to be involved in the calcium transport process.

Bone is the second tissue at which calcitriol acts to mobilize calcium for circulation. Whether calcitriol can directly stimulate bone mineralization or whether it leads to mineralization by increasing the levels of calcium and phosphate in the extracellular fluid surrounding bone remains unclear. Cytosolic receptor proteins for calcitriol in bone cells have been isolated.

In acutely uremic rats, calcitriol has been shown to stimulate intestinal calcium absorption. In bone, calcitriol, in conjunction with parathyroid hormone, stimulates resorption of calcium; and in the kidney, calcitriol increases the tubular reabsorption of calcium.

Calcitriol stimulates bone resorption which serves to mobilize calcium for the circulation, when an intestinal credit of calcium is absent. This effect is related to the role of vitamin D in maintaining the homeostasis of calcium and phosphorous in plasma. In addition, calcitriol may interact directly with osteoblasts.

The mechanism whereby calcitriol acts on the kidney and parathyroid gland remains unclear. Evidence suggests that calcitriol may enhance renal tubular calcium reabsorption. Recent studies in parathyroidectomized animals suggest that calcitriol has a direct proximal tubular action in regulating the secretion of PTH by the parathyroid gland. Evidence suggests that calcitriol may affect the secretion of PTH through a direct action on the parathyroid gland and may be involved in the regulation of PTH synthesis and/or its secretion.

Pharmacodynamics

Calcitriol is the active form of vitamin D3 (cholecalciferol). The natural or endogenous supply of vitamin D in man mainly depends on ultraviolet light for conversion of 7-dehydrocholesterol to vitamin D3 in the skin. Vitamin D3 must be metabolically activated in the liver and the kidney before it is fully active on its target tissues. The initial transformation is catalyzed by a vitamin D3-25-hydroxylase enzyme present in the liver, and the product of this reaction is 25-hydroxyvitamin D3 (calcifediol).

The latter undergoes hydroxylation in the mitochondria of kidney tissue, and this reaction is activated by the renal 25-hydroxyvitamin D3-1-alpha-hydroxylase to produce 1,25-dihydroxyvitamin D3 (calcitriol), the active form of vitamin D3.

The known sites of action of calcitriol are intestine and bone, but additional evidence suggests that it also acts on the kidney and the parathyroid gland. Calcitriol is the most active known form of vitamin D3 in stimulating intestinal calcium transport.

Pharmacokinetics

Absorption

Not applicable as CALCIJEX® is an injectable drug.

Distribution

Calcitriol, when administered by bolus injection, is rapidly available in the blood stream. Vitamin D metabolites are known to be transported in blood, bound to specific alpha2 globulins. The pharmacologic activity of an administered dose of calcitriol is about 3 to 5 days.

Metabolism

Two metabolic pathways for calcitriol have been identified: conversion to 1,24,25-(OH)3D3 and to calcitroic acid.

Clinical Trials

Study Demographics And Trial Design

Table 2: Summary of Patient Demographics for Clinical Trials in Management of Hypocalcemia in Patients Undergoing Chronic Renal Dialysis

Study # Trial Design Dosage, Route of Administration and Duration Study Subjects (N=Number) Mean Age (Range) Gender (%M/F) Race (%B/C)
CP5691 Unblinded, multi-dose, three-period study Initial dose: 0.25-1.0 mcg 3 times weekly post-dialysis Dose increases: weekly increments of 0.25 to 0.50 mcg Maximum dose: 1.75-4.0 mcg 3 times weekly post-dialysis No comparator: each patient served as his/her own control Intravenous Period 1: pre-treatment (3 weeks)1 Period 2: treatment (4-8 weeks)2 Period 3: post-treatment (3 weeks)1 20 48.3 years (21-67) Gender: 55/45 Race: 75/25
1: No vitamin D therapy.
2: CALCIJEX® administered 3 times weekly, post-hemodialysis; 2 to 6 weeks of dose adjustment followed by 2 weeks at optimal dose.
Definitions: B/C = Black / Caucasion; M/F = Male / Female.

Study Results

The safety and efficacy of CALCIJEX® (calcitriol injection) in the management of hypocalcemia in patients undergoing maintenance hemodialysis for chronic renal disease were investigated in Study 1. Twenty patients received calcitriol; doses were titrated for each patient based upon serum total calcium response.

The primary parameter for determining efficacy was serum total calcium. Serum levels of ionized calcium, phosphorus, magnesium, and alkaline phosphatase were also measured to determine the effect, if any, of calcitriol on these parameters. A significant increase (p < 0.001) in serum total calcium (CaT) of 1.7 ± 0.2 mcg/dL was observed during the last two weeks of treatment compared with the last week of the pre-treatment period, where CaT decreased by 1.2 ± 0.2 mcg/dL (p < 0.001). Mean serum C-terminal parathyroid hormone (PTH) levels decreased to 50% of pre-treatment values during Period 2 and returned to pre-treatment levels by the end of Period 3.

Detailed Pharmacology

In human studies, calcitriol is rapidly absorbed from the intestine. Vitamin D metabolites are known to be transported in blood, bound to a specific alpha2 globulin.

A vitamin D-resistant state may exist in uremic patients because of the failure of the kidney to adequately convert precursors to the active compound, calcitriol.

Recent reports have indicated that vitamin D analogues may cause a deterioration of renal function in chronic renal failure patients who are not on renal dialysis.

Calcitriol administered intravenously or intraperitonealy was found to be a simple and effective means to suppress secondary hyperparathyroidism in patients undergoing hemodialysis or ambulatory peritoneal dialysis.

Toxicology

Acute Toxicity

The acute toxicity of calcitriol administered by a variety of routes was studied in mice and rats. The lethal dosages are shown in Table 3.

Table 3: Acute Toxicity of CALCIJEX® in Mice and Rats Median Lethal Dosages

Species Route LD50 mcg/kg
Mice intraperitoneal 1900
  oral 1350
  subcutaneous 145
Rat subcutaneous 66
Definition: LD50 = Lethal dose that killed 50% of the animals.

The primary signs of toxicity included decreased lacrimation, ataxia, body temperature decrease and somnolence.

Subacute Toxicity

Rat

Neonatal rats (15/sex/dose) were administered calcitriol once daily for 14 to 16 days at oral doses of 0, 0.06, 0.19 and 0.64 mcg/kg/day. Five controls, four low-dose, two mid-dose, and fifteen high-dose pups died during the two-week treatment period. Some of the deaths were attributed to dosing accidents, but more than half of the deaths in the high-dose group were drug-related. An additional 6 high-dose pups died during a 7-week “recovery” period. Drug-related deaths resulted from metastatic calcification alone or in combination with the stress imposed by weaning.

Many high-dose pups were considerably smaller than pups in the other groups, exhibited subcutaneous white patches on head and lower jaw and developed splayed limbs, and had higher serum calcium levels than controls. Gross and histologic changes reflective of metastatic calcification were seen in a number of organs including kidney and heart. Nephrocalcinosis was the most consistent histologic lesion noted.

No significant signs of toxicity were noted in low-dose pups examined soon after final treatment, but 3 of 8 low-dose animals examined after the 7-week “recovery” period exhibited a minimal degree of renal calcification. The observed effects, were deemed to be entirely attributable to the induction of hypercalcemia in previously normocalcemic animals.

Neonatal rats (15/sex/dose) were treated intramuscularly once daily for 14 to 16 consecutive days with calcitriol at doses of 0, 0.13, 0.38 and 1.28 mcg/kg/day. The majority of the animals were killed following the last treatment, but a number of pups were maintained on a 7-week “recovery” period.

One control, one mid-dose and two high-dose pups died during the two-week treatment period; six additional mid-dose and seven additional high-dose pups died during the “recovery” period. Drug-related deaths resulted from metastatic calcification or renal tubular necrosis.

Subcutaneous white patches on the head and splayed limbs were observed at the high-dose, 1.28 mcg/kg/day. Mean body weights of males in all groups were significantly less than the control mean. Serum calcium levels were elevated in all animals receiving calcitriol.

Gross pathologic changes included white streaks of spots on the liver, heart and diaphragm. Metastatic calcification was the principal treatment-related histologic lesion found in all treatment groups. Nephrocalcinosis, gastric mineralization and calcium deposition in heart, aorta and respiratory system were consistently seen. Residual calcium deposits tended to be less severe in the tissues of the recovery animals.

Rats (10/sex/dose) were injected intramuscularly with calcitriol at dosage levels of 0, 0.03, 0.13 and 0.64 mcg/kg/day for 14 days. Dosage groups consisted of 10 males and 10 females. There were six deaths at 0.64 mcg/kg/day during the study. Apparent signs of toxicity observed at 0.13 and 0.64 mcg/kg/day included labored breathing, reduced motor activity, corneal opacities, decreased defecation and elevated serum calcium levels.

Elevation in blood urea nitrogen (BUN) and decreases in total serum protein and potassium, body weight and food consumption were noted at 0.64 mcg/kg/day. Microscopic lesions found included calcification of the myocardial fibers, arteriosclerosis of the coronary and aortic arteries, nephrolithiasis, calcification of the stomach and the large intestine and thymus hypoplasia. The only histopathological change observed at 0.03 and 0.13 mcg/kg/day was an increase in phagocytosis by the large cortical cells of the thymus. The thymus hypoplasia was considered to be attributable to a high degree of stress consequent upon debilitation and possibly severe electrolyte changes. Corneal opacities observed were not considered by the authors to be drug-related. The maximum tolerated dosage was 0.03 mcg/kg/day in this study.

Immature rats (10/sex/dose) were administered calcitriol once daily for a minimum of six weeks beginning on postnatal Day 15. At doses of 0, 0.02, 0.06 and 0.20 mcg/kg/day, no evidence of toxicity attributable to calcitriol administration was noted. The “no-effect” level was determined to be 0.20 mcg/kg/day in these animals.

Dog

Dogs (3/sex/dose) were injected intramuscularly with calcitriol at dosage levels of 0, 0.02, 0.06 and 0.21 mcg/kg/day for 14 days. There were no deaths in the study. Thinness, dehydration, decreased activity, ocular discharge, decreased body weight and food consumption were observed at 0.06 and 0.21 mcg/kg/day. Significantly elevated serum calcium levels were noted at the two higher dosage levels (0.06 and 0.21 mcg/kg/day). Calcium deposition was not evident in the tissues at any dosage level. Therefore, a dosage of 0.02 mcg/kg/day was considered to be the maximum-tolerated dose in this study.

Mutagenicity And Carcinogenicity

There was no evidence of mutagenicity as studied by the Ames Method. Concentrations as high as 1000 mcg were found to be non mutagenic to Salmonella strain.

Long-term studies in animals have not been performed to evaluate the carcinogenic potential of calcitriol.

Reproduction And Teratology

Fertility and General Reproductive Performance

Calcitriol was administered orally to male rats for 60 days prior to mating and to female rats (24/dosage) from 14 days prior to mating until sacrifice of the females either on gestation Day 13 or on lactation day 21. Dosages tested were 0, 0.002, 0.08 and 0.30 mcg/kg/day. No adverse effects on either fertility or neonatal development were noted. All F0 generation animals survived. It was concluded that under the conditions of this study there were no adverse effects observed on either reproductive parameters or the pups themselves at dosages as great as 0.30 mcg/kg/day of calcitriol.

Teratology

Calcitriol was orally administered to pregnant rats (20/dosage) from gestation Day 7 to gestation Day 15. Dosages tested were 0 (control), 0.02, 0.08 and 0.30 mcg/kg/day. Numbers of fetuses, implantation sites and resorption sites were counted. Fetuses were weighed and examined for external abnormalities. One-third of the fetuses in each litter were examined for visceral abnormalities, two-thirds of the fetuses in each litter were prepared for skeletal evaluation.

Maternal weight gain was significantly reduced in dams receiving 0.3 mcg/kg/day. No biologically significant adverse effects on rat embryonic or fetal development were observed at any of the tested dosages. There was no evidence that calcitriol was teratogenic in rats.

Calcitriol was orally administered to pregnant rabbits from gestation Day 7 to gestation Day 18. Dosages tested were 0, 0.02, 0.08 and 0.30 mcg/kg/day for 31, 16, 15 and 16 rabbits respectively. Numbers of live or dead pups, resorption sites, corpora lutea and implantation sites were recorded. Fetuses were examined for external abnormalities, dissected to check for visceral abnormalities and prepared for skeletal evaluation.

Marked weight loss occurred among high-dose dams; 3 high-dose animals died (2 clearly as a result of hypervitaminosis D). The mean litter size was reduced and the resorption frequency was increased among high-dose dams. Although not statistically significant, these changes were considered to be biologically significant by the authors. The percentage of viable pups that survived 24 hours of incubation was significantly decreased at the highest dose. The average fetal body weight was slightly reduced at this dosage as well. While the overall incidence of external, visceral and skeletal anomalies was comparable among all groups, one entire litter in each of the 0.08 and 0.30 mcg/kg groups exhibited multiple external malformations. These malformations included open eyelids, microphthalmia, cleft palate, reduced long bones, gnarled paws, pes caves, shortened ribs and sternebral defects in 9 mid-dose fetuses and open eyelids, reduced long bones and shortened ribs in 6 high-dose fetuses. The authors concluded that while the low incidence of litters involved, the lack of clear dose-response and the lack of statistical significance made it uncertain that these abnormalities were related to calcitriol administration, this possibility could not be discounted.

Perinatal and Postnatal Studies

Calcitriol was orally administered to pregnant rats (20/dosage) from gestation Day 15 through Day 21 of lactation. Dosages tested were 0, 0.02, 0.08 and 0.30 mcg/kg/day. Hypercalcemia and hypophosphatemia were noted in dams receiving 0.08 and 0.30 mcg/kg/day. Serum sampled from pups on postnatal Day 21 was hypercalcemic in both the mid- and high-dose groups. Aside from this no adverse effects on reproduction or pup growth and survival were observed at the tested dosages.

Special Studies

Vein-irritation Study

Calcitriol was given intravenously into an ear vein in rabbits at doses of 5 mcg/kg which is ten times the proposed maximum dosage. Calcitriol was found not to be irritating to veins.

REFERENCES

1. Andress DL, Norric KC, Coburn JW, Slatopolsky EA, Sherrard DJ. Intravenous calcitriol in the treatment of refractory osteitis fibrosa of chronic renal failure. N Engl J Med 1989;321:274-279.

2. Attie MF. Treatment of hypercalcemia. Endocrinol Metabol Clin N America, 1989;18(3):807-828.

3. Avioli LV, Hadda JG. Vitamin D current concepts. Metabolism 1973;22:507.

4. Brickman AS, Hartenbower DL, Norman AW, Coburn JW. Actions of 1alphahydroxyvitamin D3 and 1,25-dihydroxyvitamin D3 on mineral metabolism in man. Am J Clin Nutr 1977;30:1064-1069.

5. Brickman AS, et al. Biological action of 1,25-dihydroxy-vitamin D3 in the rachitic dog. Endocrinology 1973;92:728-734.

6. Cannella G, Bonucci E, Rolla D, Ballanti P, Moriero E, De Grandi R, Augeri C, Claudiani F, Di Maio G. Evidence of healing of secondary hyperparathyroidism in chronically hemodialyzed uremic patients treated with long-term intravenous calcitriol. Kidney, Intern 1994;46:1124-1132.

7. Christiansen C, Rodbro P, Naestoft J, Christensen MS. A possible direct effect of 24,25-dihydroxycholecalciferol on the parathyroid gland in patients with chronic renal failure. Clin Endocrinol (OXF) 1981;15:237-242.

8. Coburn JW, Hartenbower DL, Brickman AS. Advances in vitamin D metabolism as they pertain to chronic renal disease. Am J Clin Nutr 1976;29:1283-1299.

9. Coburn JW, Hartenbower DL, Norman AW. Metabolism and action of the hormone vitamin D. Its relation to diseases of calcium homeostasis. West J Med 1974;121:22-44.

10. Davies M, Hill LF, Taylor CM, Stanbury SW. 1,25-dihydroxycholecalciferol in hypoparathyroidism. Lancet 1977;55-59.

11. Delmez JA, Dougan CS, Gearing BK, Rothstein M, Windus DW, Rapp N, Slatopolsky E. The effects of intraperitoneal calcitriol on calcium and parathyroid hormone. Kidney Int 1987;31:795-799.

12. Eisman JA, Hamstra AJ, Kream BE, DeLuca HF. 1,25-dihydroxy-vitamin D in biological fluids: a simplified and sensitive assay. Science 1976;193:1021-1023.

13. Fisher JA, Biswanger U. 1,25-dihydroxycholecalciferol in ialysed patients with clinically asymptomatic renal osteodystrophy: a controlled study. Cont Nephrol 1980;18:82-91.

14. Haussler MR, Norman AW. Chromosomal receptor for a vitamin D metabolite. Proc Natl Acad Sci (USA) 1969;62:155-162.

15. Healy MD, Malluche HH, Goldstein SA, Riner FR, Massry SG. Effects of long term therapy with calcitriol in patients with moderate renal failure. Arch Intern Med 1980;140:1030-1033.

16. Massry SG. Current status of the use of 1,25-dihydroxyvitamin in the management of renal osteodystrophy. Kidney Int 1980;18:409-418.

17. Mawer BE, Backhause J, Davies M, Hill LF. Metabolic fate of administered 1,25-dihydroxycholecalciferol in controls and in patients with hypoparathyroidism. Lancet 1976;1203-1206.

18. McLain RM, Langhoff L, Hoar RM. Reproductive studies with 1alpha,25-dihydroxyvitamin D3 (calcitriol) in rats and rabbits. Toxicol Appl Pharmacol 1980;52:89-98.

19. Midgett RJ, Spielvogel AM, Coburn JW, Norman AW. Studies on calciferol metabolism VI. The renal production of the biologically active form of vitamin D, 1,25-dihydroxycholecalciferol; species, tissue and subcellular distribution. J Clin Endocrinol Metab 1973;36:1153-1161.

20. Ponchon G, DeLuca HF. The role of the liver in the metabolism of vitamin D. J Clin Invest 1969;48:1273-1279.

21. Ponchon G. Kennan AL, DeLuca HF. “Activation” of vitamin D by the liver. J Clin Invest 1969;48:2032-2037.

22. Prior JC, Cameron EC, Ballon HS, Lirenman DS, Moriarity MV, Price JDS. Experience with 1,25-dihydroxycholecalciferol therapy in undergoing hemodialysis patients with progressive vitamin D2 treated osteodystrophy. Am J Med 1979;67:583-589.

23. Silverberg DS, Bettcher KB, Dossetor JB, Overton TR, Holick MF, DeLuca HF. Effects of 1,25-dihydroxycholecalciferol in renal osteodystrophy. Can Med Assoc J 1975;112: 190-195.

24. Sinha TK, DeLuca HF, Bell HN. Evidence for a defect in the formation of 1,25-dihydroxyvitamin D in pseudohypoparathyroidism. Metatolism 1977;26:731-738.

25. Slatopolsky E, Weerts C, Thielan J, Horst R, Harter H, Martin KJ. Marked suppression of secondary hyperparathyroidism by intravenous administration of 1,25-dihydroxycholecalciferol in uremic patients. J Clin Invest 1984;74:2136-2143.

26. Smith JE, Goodman DS. The turnover and transport of vitamin D and of a polar metabolite with the properties of 25-hydroxycholecalciferol in human plasma. J Clin Invest 1971;50:2159-2167.

27. Teiltebaum SL, Bergfield MA, Freitag J, Hruska KA, Slatopolsky E. Do parathyroid hormone and 1,25-dihydroxyvitamin D modulate bone formation in uremia? J Clin Endocrinol Metab 1980;51(2):247-251.

28. Tougaard L, Sorensen E, Brochner-Mortensen J, Christensen MB, Rodbro P, Sorensen AWS. Controlled trial of 1-hydroxycholecalciferol in chronic renal failure. Lancet 1976;1:1044-1047.

29. Trachtman H, Gauthier B. Parenteral calcitriol for treatment of severe renal osteodystrophy in children with chronic renal insufficiency. J Pediatr 1987;110:966-970.

30. Tsai HC, Norman AW. Studies on calciferol metabolism VIII. Evidence for a cytoplasmic receptor for 1,25-dihydroxy-vitamin D3 in the intestinal mucosa. J Biol Chem 1973;248:5967-5975.

31. Tsai HC, Wong RG, Norman AW. Studies on calciferol metabolism IV. Subcellular localization of 1,25-dihydroxy-vitamin D3 in intestinal mucosa and correlation with increased calcium transport. J Biol Chem 1972;247:5511-5519.

32. Velentzas C, Oreopoulos DG, Pierratos A, Meema HE, Rabinovitch S, Meindock-Hudsan H, Murray TM, Ogilvie R, Katirzoglou A. Treatment of renal osteodystrophy with 1,25-dihydroxycholecalciferol. Can Med Assoc J 1981;124:577-583.

33. Weber JC, Pons U, Kodicek E. The localization of 1,25-dihydroxycholecalciferol in bone cell nuclei of rechitic chicks. Biochem J 1971;125:147-153.

34. Winterborn MH, Mace PJ, Heath DA, White RHR. Impairment of renal function in patients on 1-hydroxycholecalciferol. Lancet 1978;2:150-151.

35. Wong RG, Norman AW, Reddy CR, Coburn JW. Biological effects of 1,25-dihydroxycholecalciferol (a highly active vitamin D metabolite) in acutely uremic rats. J Clin Invest 1972;51:1287-1291.

Last reviewed on RxList: 2/23/2016
This monograph has been modified to include the generic and brand name in many instances.

Report Problems to the Food and Drug Administration

 

You are encouraged to report negative side effects of prescription drugs to the FDA. Visit the FDA MedWatch website or call 1-800-FDA-1088.


Women's Health

Find out what women really need.