Recommended Topic Related To:

Combivir

"For children who have had HIV-1 infection since birth, the combination drug therapies now used to treat HIV appear to protect against the heart damage seen before combination therapies were available, according to researchers in a National Instit"...

Combivir

CLINICAL PHARMACOLOGY

Mechanism of Action

COMBIVIR is an antiviral agent.

Pharmacokinetics

Pharmacokinetics in Adults

COMBIVIR: One COMBIVIR Tablet was bioequivalent to 1 EPIVIR Tablet (150 mg) plus 1 RETROVIR Tablet (300 mg) following single-dose administration to fasting healthy subjects (n = 24).

Lamivudine: The pharmacokinetic properties of lamivudine in fasting patients are summarized in Table 3. Following oral administration, lamivudine is rapidly absorbed and extensively distributed. Binding to plasma protein is low. Approximately 70% of an intravenous dose of lamivudine is recovered as unchanged drug in the urine. Metabolism of lamivudine is a minor route of elimination. In humans, the only known metabolite is the trans-sulfoxide metabolite (approximately 5% of an oral dose after 12 hours).

Zidovudine: The pharmacokinetic properties of zidovudine in fasting patients are summarized in Table 3. Following oral administration, zidovudine is rapidly absorbed and extensively distributed. Binding to plasma protein is low. Zidovudine is eliminated primarily by hepatic metabolism. The major metabolite of zidovudine is GZDV. GZDV area under the curve (AUC) is about 3-fold greater than the zidovudine AUC. Urinary recovery of zidovudine and GZDV accounts for 14% and 74% of the dose following oral administration, respectively. A second metabolite, 3'-amino-3'-deoxythymidine (AMT), has been identified in plasma. The AMT AUC was one-fifth of the zidovudine AUC.

Table 3: Pharmacokinetic Parametersa for Lamivudine and Zidovudine in Adults

Parameter Lamivudine Zidovudine
Oral bioavailability (%) 86 ± 16 N = 12 64 ± 10 n = 5
Apparent volume of distribution (L/kg) 1.3 ± 0.4 N = 20 1.6 ± 0.6 n = 8
Plasma protein binding (%) < 36 < 38
CSF:plasma ratiob 0.12
[0.04 to 0.47]
n = 38c 0.60
[0.04 to 2.62]
N = 39d
Systemic clearance (L/hr/kg) 0.33 ± 0.06 N = 20 1.6 ± 0.6 n = 6
Renal clearance (L/hr/kg) 0.22 ± 0.06 N = 20 0.34 ± 0.05 n = 9
Elimination half-life (hr)e 5 to 7 0.5 to 3
aData presented as mean standard deviation except where noted.
bMedian [range].
cChildren.
dAdults.
eApproximate range.

Effect of Food on Absorption of COMBIVIR: COMBIVIR may be administered with or without food. The lamivudine and zidovudine AUC following administration of COMBIVIR with food was similar when compared to fasting healthy subjects (n = 24).

Special Populations

Pregnancy

See Use In Specific Populations.

COMBIVIR: No data are available.

Zidovudine: Zidovudine pharmacokinetics has been studied in a Phase 1 study of 8 women during the last trimester of pregnancy. As pregnancy progressed, there was no evidence of drug accumulation. The pharmacokinetics of zidovudine was similar to that of nonpregnant adults. Consistent with passive transmission of the drug across the placenta, zidovudine concentrations in neonatal plasma at birth were essentially equal to those in maternal plasma at delivery. Although data are limited, methadone maintenance therapy in 5 pregnant women did not appear to alter zidovudine pharmacokinetics. In a nonpregnant adult population, a potential for interaction has been identified.

Nursing Mothers

See Use In Specific Populations.

Pediatric Patients

COMBIVIR should not be administered to pediatric patients weighing less than 30 kg.

Geriatric Patients

The pharmacokinetics of lamivudine and zidovudine have not been studied in patients over 65 years of age.

Gender

A pharmacokinetic study in healthy male (n = 12) and female (n = 12) subjects showed no gender differences in zidovudine AUC∞ or lamivudine AUC∞ normalized for body weight.

Race

Lamivudine: There are no significant racial differences in lamivudine pharmacokinetics.

Zidovudine: The pharmacokinetics of zidovudine with respect to race have not been determined.

Drug Interactions

See DRUG INTERACTIONS .

No drug interaction studies have been conducted using COMBIVIR Tablets. However, Table 4 presents drug interaction information for the individual components of COMBIVIR.

Lamivudine Plus Zidovudine: No clinically significant alterations in lamivudine or zidovudine pharmacokinetics were observed in 12 asymptomatic HIV-1-infected adult patients given a single dose of zidovudine (200 mg) in combination with multiple doses of lamivudine (300 mg q 12 hr).

Table 4: Effect of Coadministered Drugs on Lamivudine and Zidovudine AUCa Note: ROUTINE DOSE MODIFICATION OF LAMIVUDINE AND ZIDOVUDINE IS NOT WARRANTED WITH COADMINISTRATION OF THE FOLLOWING DRUGS.

Drugs That May Alter Lamivudine Blood Concentrations
Coadministered Drug and Dose Lamivudine Dose n Lamivudine Concentrations Concentration of Coadministered Drug
AUC Variability
Nelfinavir 750 mg q 8 hr x 7 to 10 days single 150 mg 11 ↑ AUC 10% 95% CI: 1% to 20%
Trimethoprim 160 mg/ Sulfamethoxazole 800 mg daily x 5 days single 300 mg 14 ↑ AUC 43% 90% CI: 32% to 55%
Drugs That May Alter Zidovudine Blood Concentrations
Coadministered Drug and Dose Zidovudine Dose n Zidovudine Concentrations Concentration of Coadministered Drug
AUC Variability
Atovaquone 750 mg q 12 hr with food 200 mg q 8 hr 14 ↑ AUC 31% Range23% to 78%b
 
Clarithromycin 500 mg twice daily 100 mg q 4 hr x 7 days 4 ↓ AUC 12% Range ↓ 34% to ↑ 14% Not Reported
Fluconazole 400 mg daily 200 mg q 8 hr 12 ↑ AUC 74% 95% CI: 54% to 98% Not Reported
Methadone 30 to 90 mg daily 200 mg q 4 hr 9 ↑ AUC 43% Range16% to 64%b
Nelfinavir 750 mg q 8 hr x 7 to 10 days single 200 mg 11 ↓ AUC 35% Range 28% to 41%
Probenecid 500 mg q 6 hr x 2 days 2 mg/kg q 8 hr x 3 days 3 ↑ AUC 106% Range 100% to170%b Not Assessed
Rifampin 600 mg daily x 14 days 200 mg q 8 hr X 14 days 8 ↓ AUC 47% 90% CI:41% to 53% Not Assessed
Ritonavir 300 mg q 6 hr x 4 days 200 mg q 8 hrx 4 days 9 ↓ AUC 25% 95% CI:15% to 34%
Valproic acid 250 mg or 500 mg q 8 hr x 4 days 100 mg q 8 hr x 4 days 6 ↑ AUC 80% Range 64% to 130%b Not Assessed
↑ = Increase; ↓= Decrease; ↔ = no significant change; AUC = area under the concentration versus time curve; CI = confidence interval.
a This table is not all inclusive.
b Estimated range of percent difference.

Ribavirin: In vitro data indicate ribavirin reduces phosphorylation of lamivudine, stavudine, and zidovudine. However, no pharmacokinetic (e.g., plasma concentrations or intracellular triphosphorylated active metabolite concentrations) or pharmacodynamic (e.g., loss of HIV-1/HCV virologic suppression) interaction was observed when ribavirin and lamivudine (n = 18), stavudine (n = 10), or zidovudine (n = 6) were coadministered as part of a multi-drug regimen to HIV-1/HCV co-infected patients [see WARNINGS AND PRECAUTIONS].

Microbiology

Mechanism of Action

Lamivudine: Intracellularly, lamivudine is phosphorylated to its active 5'-triphosphate metabolite, lamivudine triphosphate (3TC-TP). The principal mode of action of 3TC-TP is inhibition of reverse transcriptase (RT) via DNA chain termination after incorporation of the nucleotide analogue. 3TC-TP is a weak inhibitor of cellular DNA polymerases α, β, and γ.

Zidovudine: Intracellularly, zidovudine is phosphorylated to its active 5'-triphosphate metabolite, zidovudine triphosphate (ZDV-TP). The principal mode of action of ZDV-TP is inhibition of RT via DNA chain termination after incorporation of the nucleotide analogue. ZDV-TP is a weak inhibitor of the cellular DNA polymerases α and γ and has been reported to be incorporated into the DNA of cells in culture.

Antiviral Activity

Lamivudine Plus Zidovudine: In HIV-1–infected MT-4 cells, lamivudine in combination with zidovudine at various ratios exhibited synergistic antiretroviral activity.

Lamivudine: The antiviral activity of lamivudine against HIV-1 was assessed in a number of cell lines (including monocytes and fresh human peripheral blood lymphocytes) using standard susceptibility assays. EC50 values (50% effective concentrations) were in the range of 0.003 to 15 μM (1 μM = 0.23 mcg/mL). HIV-1 from therapy-naive subjects with no amino acid substitutions associated with resistance gave median EC50 values of 0.429 μM (range: 0.200 to 2.007 μM) from Virco (n = 92 baseline samples from COL40263) and 2.35 μM (1.37 to 3.68 μM) from Monogram Biosciences (n = 135 baseline samples from ESS30009). The EC50 values of lamivudine against different HIV-1 clades (A-G) ranged from 0.001 to 0.120 μM, and against HIV-2 isolates from 0.003 to 0.120 μM in peripheral blood mononuclear cells. Ribavirin (50 μM) decreased the anti-HIV-1 activity of lamivudine by 3.5 fold in MT-4 cells.

Zidovudine: The antiviral activity of zidovudine against HIV-1 was assessed in a number of cell lines (including monocytes and fresh human peripheral blood lymphocytes). The EC50 and EC90 values for zidovudine were 0.01 to 0.49 μM (1 μM = 0.27 mcg/mL) and 0.1 to 9 μM, respectively. HIV-1 from therapy-naive subjects with no amino acid substitutions associated with resistance gave median EC50 values of 0.011 μM (range: 0.005 to 0.110 μM) from Virco (n = 92 baseline samples from COL40263) and 0.0017 μM (0.006 to 0.0340 μM) from Monogram Biosciences (n = 135 baseline samples from ESS30009). The EC50 values of zidovudine against different HIV-1 clades (A-G) ranged from 0.00018 to 0.02 μM, and against HIV-2 isolates from 0.00049 to 0.004 μM. In cell culture drug combination studies, zidovudine demonstrates synergistic activity with the nucleoside reverse transcriptase inhibitors (NRTIs) abacavir, didanosine, lamivudine, and zalcitabine; the non-nucleoside reverse transcriptase inhibitors (NNRTIs) delavirdine and nevirapine; and the protease inhibitors (PIs) indinavir, nelfinavir, ritonavir, and saquinavir; and additive activity with interferon alfa. Ribavirin has been found to inhibit the phosphorylation of zidovudine in cell culture.

Resistance

Lamivudine Plus Zidovudine Administered As Separate Formulations: In patients receiving lamivudine monotherapy or combination therapy with lamivudine plus zidovudine, HIV-1 isolates from most patients became phenotypically and genotypically resistant to lamivudine within 12 weeks. In some patients harboring zidovudine-resistant virus at baseline, phenotypic sensitivity to zidovudine was restored by 12 weeks of treatment with lamivudine and zidovudine. Combination therapy with lamivudine plus zidovudine delayed the emergence of amino acid substitutions conferring resistance to zidovudine.

HIV-1 strains resistant to both lamivudine and zidovudine have been isolated from patients after prolonged lamivudine/zidovudine therapy. Dual resistance required the presence of multiple amino acid substitutions, the most essential of which may be G333E. The incidence of dual resistance and the duration of combination therapy required before dual resistance occurs are unknown.

Lamivudine: Lamivudine-resistant isolates of HIV-1 have been selected in cell culture and have also been recovered from patients treated with lamivudine or lamivudine plus zidovudine. Genotypic analysis of isolates selected in cell culture and recovered from lamivudine-treated patients showed that the resistance was due to a specific amino acid substitution in the HIV-1 reverse transcriptase at codon 184 changing the methionine to either isoleucine or valine (M184V/I).

Zidovudine: HIV-1 isolates with reduced susceptibility to zidovudine have been selected in cell culture and were also recovered from patients treated with zidovudine. Genotypic analyses of the isolates selected in cell culture and recovered from zidovudine-treated patients showed substitutions in the HIV-1 RT gene resulting in 6 amino acid substitutions (M41L, D67N, K70R, L210W, T215Y or F, and K219Q) that confer zidovudine resistance. In general, higher levels of resistance were associated with greater number of amino acid substitutions.

Cross-Resistance

Cross-resistance has been observed among NRTIs.

Lamivudine Plus Zidovudine: Cross-resistance between lamivudine and zidovudine has not been reported. In some patients treated with lamivudine alone or in combination with zidovudine, isolates have emerged with a substitution at codon 184, which confers resistance to lamivudine. Cross-resistance to abacavir, didanosine, tenofovir, and zalcitabine has been observed in some patients harboring lamivudine-resistant HIV-1 isolates. In some patients treated with zidovudine plus didanosine or zalcitabine, isolates resistant to multiple drugs, including lamivudine, have emerged (see under Zidovudine below).

Lamivudine: See Lamivudine Plus Zidovudine (above).

Zidovudine: In a study of 167 HIV-1-infected patients, isolates (n = 2) with multi-drug resistance to didanosine, lamivudine, stavudine, zalcitabine, and zidovudine were recovered from patients treated for ≥ 1 year with zidovudine plus didanosine or zidovudine plus zalcitabine. The pattern of resistance-associated amino acid substitutions with such combination therapies was different (A62V, V75I, F77L, F116Y, Q151M) from the pattern with zidovudine monotherapy, with the Q151M substitution being most commonly associated with multi-drug resistance. The substitution at codon 151 in combination with substitutions at 62, 75, 77, and 116 results in a virus with reduced susceptibility to didanosine, lamivudine, stavudine, zalcitabine, and zidovudine. Thymidine analogue mutations (TAMs) are selected by zidovudine and confer cross-resistance to abacavir, didanosine, stavudine, tenofovir, and zalcitabine.

Reproductive and Developmental Toxicology Studies

Lamivudine

Reproduction studies have been performed in rats and rabbits at orally administered doses up to 4,000 mg/kg/day and 1,000 mg/kg/day, respectively, producing plasma levels up to approximately 35 times that for the adult HIV dose. No evidence of teratogenicity due to lamivudine was observed. Evidence of early embryolethality was seen in the rabbit at exposure levels similar to those observed in humans, but there was no indication of this effect in the rat at exposure levels up to 35 times those in humans. Studies in pregnant rats and rabbits showed that lamivudine is transferred to the fetus through the placenta.

Zidovudine

Oral teratology studies in the rat and in the rabbit at doses up to 500 mg/kg/day revealed no evidence of teratogenicity with zidovudine. Zidovudine treatment resulted in embryo/fetal toxicity as evidenced by an increase in the incidence of fetal resorptions in rats given 150 or 450 mg/kg/day and rabbits given 500 mg/kg/day. The doses used in the teratology studies resulted in peak zidovudine plasma concentrations (after one-half of the daily dose) in rats 66 to 226 times, and in rabbits 12 to 87 times, mean steady-state peak human plasma concentrations (after one-sixth of the daily dose) achieved with the recommended daily dose (100 mg every 4 hours). In an in vitro experiment with fertilized mouse oocytes, zidovudine exposure resulted in a dose-dependent reduction in blastocyst formation. In an additional teratology study in rats, a dose of 3,000 mg/kg/day (very near the oral median lethal dose in rats of 3,683 mg/kg) caused marked maternal toxicity and an increase in the incidence of fetal malformations. This dose resulted in peak zidovudine plasma concentrations 350 times peak human plasma concentrations. (Estimated AUC in rats at this dose level was 300 times the daily AUC in humans given 600 mg/day.) No evidence of teratogenicity was seen in this experiment at doses of 600 mg/kg/day or less.

Clinical Studies

There have been no clinical trials conducted with COMBIVIR. See CLINICAL PHARMACOLOGY for information about bioequivalence. One COMBIVIR Tablet given twice daily is an alternative regimen to EPIVIR Tablets 150 mg twice daily plus RETROVIR 600 mg per day in divided doses.

Adults

Lamivudine Plus Zidovudine

The NUCB3007 (CAESAR) study was conducted using EPIVIR 150-mg Tablets (150 mg twice daily) and RETROVIR 100-mg Capsules (2 x 100 mg 3 times daily). CAESAR was a multi-center, double-blind, placebo-controlled study comparing continued current therapy (zidovudine alone [62% of patients] or zidovudine with didanosine or zalcitabine [38% of patients]) to the addition of EPIVIR or EPIVIR plus an investigational non-nucleoside reverse transcriptase inhibitor, randomized 1:2:1. A total of 1,816 HIV-1-infected adults with 25 to 250 (median 122) CD4 cells/mm³ at baseline were enrolled: median age was 36 years, 87% were male, 84% were nucleoside-experienced, and 16% were therapy-naive. The median duration on study was 12 months. Results are summarized in Table 5.

Table 5: Number of Patients (%) With At Least 1 HIV-1 Disease-Progression Event or Death

Endpoint Current Therapy
(n = 460)
EPIVIR plus Current Therapy
(n = 896)
EPIVIR plus a NNRTIa plus Current Therapy
(n = 460)
HIV-1 progression or death 90 (19.6%) 86 (9.6%) 41 (8.9%)
Death 27 (5.9%) 23 (2.6%) 14 (3.0%)
a An investigational non-nucleoside reverse transcriptase inhibitor not approved in the United States.

Prevention of Maternal-Fetal HIV-1 Transmission

The utility of zidovudine alone for the prevention of maternal-fetal HIV-1 transmission was demonstrated in a randomized, double-blind, placebo-controlled trial conducted in HIV-1-infected pregnant women with CD4+ cell counts of 200 to 1,818 cells/mm³ (median in the treated group: 560 cells/mm³) who had little or no previous exposure to zidovudine. Oral zidovudine was initiated between 14 and 34 weeks of gestation (median 11 weeks of therapy) followed by IV administration of zidovudine during labor and delivery. Following birth, neonates received oral zidovudine syrup for 6 weeks. The study showed a statistically significant difference in the incidence of HIV-1 infection in the neonates (based on viral culture from peripheral blood) between the group receiving zidovudine and the group receiving placebo. Of 363 neonates evaluated in the study, the estimated risk of HIV-1 infection was 7.8% in the group receiving zidovudine and 24.9% in the placebo group, a relative reduction in transmission risk of 68.7%. Zidovudine was well tolerated by mothers and infants. There was no difference in pregnancy-related adverse events between the treatment groups.

Last reviewed on RxList: 12/16/2011
This monograph has been modified to include the generic and brand name in many instances.

A A A

Combivir - User Reviews

Combivir User Reviews

Now you can gain knowledge and insight about a drug treatment with Patient Discussions.

Here is a collection of user reviews for the medication Combivir sorted by most helpful. Patient Discussions FAQs

Report Problems to the Food and Drug Administration

 

You are encouraged to report negative side effects of prescription drugs to the FDA. Visit the FDA MedWatch website or call 1-800-FDA-1088.


WebMD Daily

Get breaking medical news.


NIH talks about Ebola on WebMD