October 6, 2015
Recommended Topic Related To:

Coreg CR

"What are beta blockers?

The class of drugs called beta blockers were given their name because this class of medications counteracts the stimulatory effects of epinephrine (adrenaline) on the so-called beta-adrenergic receptors found"...

Coreg CR


Mechanism of Action

Carvedilol is a racemic mixture in which nonselective β-adrenoreceptor blocking activity is present in the S(-) enantiomer and α1-adrenergic blocking activity is present in both R(+) and S(-) enantiomers at equal potency. Carvedilol has no intrinsic sympathomimetic activity.


Heart Failure and Left Ventricular Dysfunction Following Myocardial Infarction

The basis for the beneficial effects of carvedilol in patients with heart failure and in patients with left ventricular dysfunction following an acute myocardial infarction is not known. The concentration-response relationship for β1-blockade following administration of COREG CR is equivalent (±20%) to immediate-release carvedilol tablets.


The mechanism by which β-blockade produces an antihypertensive effect has not been established.

β-adrenoreceptor blocking activity has been demonstrated in animal and human studies showing that carvedilol (1) reduces cardiac output in normal subjects; (2) reduces exercise- and/or isoproterenol-induced tachycardia; and (3) reduces reflex orthostatic tachycardia. Significant β-adrenoreceptor blocking effect is usually seen within 1 hour of drug administration.

α1-adrenoreceptor blocking activity has been demonstrated in human and animal studies, showing that carvedilol (1) attenuates the pressor effects of phenylephrine; (2) causes vasodilation; and (3) reduces peripheral vascular resistance. These effects contribute to the reduction of blood pressure and usually are seen within 30 minutes of drug administration.

Due to the α1-receptor blocking activity of carvedilol, blood pressure is lowered more in the standing than in the supine position, and symptoms of postural hypotension< (1.8%), including rare instances of syncope, can occur. Following oral administration, when postural hypotension has occurred, it has been transient and is uncommon when immediate-release carvedilol is administered with food at the recommended starting dose and titration increments are closely followed [see DOSAGE AND ADMINISTRATION].

In a randomized, double-blind, placebo-controlled trial, the β1-blocking effect of COREG CR, as measured by heart rate response to submaximal bicycle ergometry, was shown to be equivalent to that observed with immediate-release carvedilol at steady state in adult patients with essential hypertension.

In hypertensive patients with normal renal function, therapeutic doses of carvedilol decreased renal vascular resistance with no change in glomerular filtration rate or renal plasma flow. Changes in excretion of sodium, potassium, uric acid, and phosphorus in hypertensive patients with normal renal function were similar after carvedilol and placebo.

Carvedilol has little effect on plasma catecholamines, plasma aldosterone, or electrolyte levels, but it does significantly reduce plasma renin activity when given for at least 4 weeks. It also increases levels of atrial natriuretic peptide.



Carvedilol is rapidly and extensively absorbed following oral administration of immediate-release carvedilol tablets, with an absolute bioavailability of approximately 25% to 35% due to a significant degree of first-pass metabolism. COREG CR extended-release capsules have approximately 85% of the bioavailability of immediate-release carvedilol tablets. For corresponding dosages [see DOSAGE AND ADMINISTRATION], the exposure (AUC, Cmax, trough concentration) of carvedilol as COREG CR extended-release capsules is equivalent to those of immediate-release carvedilol tablets when both are administered with food. The absorption of carvedilol from COREG CR is slower and more prolonged compared to the immediate-release carvedilol tablet with peak concentrations achieved approximately 5 hours after administration. Plasma concentrations of carvedilol increase in a dose-proportional manner over the dosage range of COREG CR 10 to 80 mg. Within-subject and between-subject variability for AUC and Cmax is similar for COREG CR and immediate-release carvedilol.

Effect of Food

Administration of COREG CR with a high-fat meal resulted in increases (~20%) in AUC and Cmax compared to COREG CR administered with a standard meal. Decreases in AUC (27%) and Cmax (43%) were observed when COREG CR was administered in the fasted state compared to administration after a standard meal. COREG CR should be taken with food.

In a study with adult subjects, sprinkling the contents of the COREG CR capsule on applesauce did not appear to have a significant effect on overall exposure (AUC) compared to administration of the intact capsule following a standard meal but did result in a decrease in Cmax (18%).


Carvedilol is more than 98% bound to plasma proteins, primarily with albumin. The plasma-protein binding is independent of concentration over the therapeutic range. Carvedilol is a basic, lipophilic compound with a steady-state volume of distribution of approximately 115 L, indicating substantial distribution into extravascular tissues.

Metabolism and Excretion

Carvedilol is extensively metabolized. Following oral administration of radiolabelled carvedilol to healthy volunteers, carvedilol accounted for only about 7% of the total radioactivity in plasma as measured by AUC. Less than 2% of the dose was excreted unchanged in the urine. Carvedilol is metabolized primarily by aromatic ring oxidation and glucuronidation. The oxidative metabolites are further metabolized by conjugation via glucuronidation and sulfation. The metabolites of carvedilol are excreted primarily via the bile into the feces. Demethylation and hydroxylation at the phenol ring produce 3 active metabolites with β-receptor blocking activity. Based on preclinical studies, the 4'-hydroxyphenyl metabolite is approximately 13 times more potent than carvedilol for β-blockade.

Compared to carvedilol, the 3 active metabolites exhibit weak vasodilating activity. Plasma concentrations of the active metabolites are about one-tenth of those observed for carvedilol and have pharmacokinetics similar to the parent.

Carvedilol undergoes stereoselective first-pass metabolism with plasma levels of R(+)-carvedilol approximately 2 to 3 times higher than S(-)-carvedilol following oral administration of COREG CR in healthy subjects. Apparent clearance is 90 L/h and 213 L/h for R(+)- and S(-)-carvedilol, respectively.

The primary P450 enzymes responsible for the metabolism of both R(+) and S(-)-carvedilol in human liver microsomes were CYP2D6 and CYP2C9 and to a lesser extent CYP3A4, 2C19, 1A2, and 2E1. CYP2D6 is thought to be the major enzyme in the 4'- and 5'-hydroxylation of carvedilol, with a potential contribution from 3A4. CYP2C9 is thought to be of primary importance in the O-methylation pathway of S(-)-carvedilol.

Carvedilol is subject to the effects of genetic polymorphism with poor metabolizers of debrisoquin (a marker for cytochrome P450 2D6) exhibiting 2- to 3-fold higher plasma concentrations of R(+)-carvedilol compared to extensive metabolizers. In contrast, plasma levels of S(-)-carvedilol are increased only about 20% to 25% in poor metabolizers, indicating this enantiomer is metabolized to a lesser extent by cytochrome P450 2D6 than R(+)-carvedilol. The pharmacokinetics of carvedilol do not appear to be different in poor metabolizers of S-mephenytoin (patients deficient in cytochrome P450 2C19).

Specific Populations

Heart Failure

Following administration of immediate-release carvedilol tablets, steady-state plasma concentrations of carvedilol and its enantiomers increased proportionally over the dose range in patients with heart failure. Compared to healthy subjects, heart failure patients had increased mean AUC and Cmax values for carvedilol and its enantiomers, with up to 50% to 100% higher values observed in 6 patients with NYHA class IV heart failure. The mean apparent terminal elimination half-life for carvedilol was similar to that observed in healthy subjects.

For corresponding dose levels [see DOSAGE AND ADMINISTRATION], the steady-state pharmacokinetics of carvedilol (AUC, Cmax, trough concentrations) observed after administration of COREG CR to chronic heart failure patients (mild, moderate, and severe) were similar to those observed after administration of immediate-release carvedilol tablets.


For corresponding dose levels [see DOSAGE AND ADMINISTRATION], the pharmacokinetics (AUC, Cmax, and trough concentrations) observed with administration of COREG CR were equivalent (±20%) to those observed with immediate-release carvedilol tablets following repeat dosing in patients with essential hypertension. Geriatric: Plasma levels of carvedilol average about 50% higher in the elderly compared to young subjects after administration of immediate-release carvedilol.

Hepatic Impairment

No studies have been performed with COREG CR in patients with hepatic impairment. Compared to healthy subjects, patients with severe liver impairment (cirrhosis) exhibit a 4- to 7-fold increase in carvedilol levels. Carvedilol is contraindicated in patients with severe liver impairment.

Renal Impairment

No studies have been performed with COREG CR in patients with renal impairment. Although carvedilol is metabolized primarily by the liver, plasma concentrations of carvedilol have been reported to be increased in patients with renal impairment after dosing with immediate-release carvedilol. Based on mean AUC data, approximately 40% to 50% higher plasma concentrations of carvedilol were observed in hypertensive patients with moderate to severe renal impairment compared to a control group of hypertensive patients with normal renal function. However, the ranges of AUC values were similar for both groups. Changes in mean peak plasma levels were less pronounced, approximately 12% to 26% higher in patients with impaired renal function.

Consistent with its high degree of plasma protein binding, carvedilol does not appear to be cleared significantly by hemodialysis.

Drug-Drug Interactions

Since carvedilol undergoes substantial oxidative metabolism, the metabolism and pharmacokinetics of carvedilol may be affected by induction or inhibition of cytochrome P450 enzymes.

The following drug interaction studies were performed with immediate-release carvedilol tablets.


In a pharmacokinetic study conducted in 106 Japanese patients with heart failure, coadministration of small loading and maintenance doses of amiodarone with carvedilol resulted in at least a 2-fold increase in the steady-state trough concentrations of S(-)-carvedilol [see DRUG INTERACTIONS].


In a pharmacokinetic study conducted in 10 healthy male subjects, cimetidine (1,000 mg/day) increased the steady-state AUC of carvedilol by 30% with no change in Cmax [see DRUG INTERACTIONS].


Following concomitant administration of carvedilol (25 mg once daily) and digoxin (0.25 mg once daily) for 14 days, steady-state AUC and trough concentrations of digoxin were increased by 14% and 16%, respectively, in 12 hypertensive patients [see DRUG INTERACTIONS].


In 12 healthy subjects, combined administration of carvedilol (25 mg once daily) and a single dose of glyburide did not result in a clinically relevant pharmacokinetic interaction for either compound.


A single oral dose of carvedilol 25 mg did not alter the pharmacokinetics of a single oral dose of hydrochlorothiazide 25 mg in 12 patients with hypertension. Likewise, hydrochlorothiazide had no effect on the pharmacokinetics of carvedilol.


In a pharmacokinetic study conducted in 8 healthy male subjects, rifampin (600 mg daily for 12 days) decreased the AUC and Cmax of carvedilol by about 70% [see DRUG INTERACTIONS].


In a study of 12 healthy subjects, combined oral administration of carvedilol 25 mg once daily and torsemide 5 mg once daily for 5 days did not result in any significant differences in their pharmacokinetics compared with administration of the drugs alone.


Carvedilol (12.5 mg twice daily) did not have an effect on the steady-state prothrombin time ratios and did not alter the pharmacokinetics of R(+)- and S(-)-warfarin following concomitant administration with warfarin in 9 healthy volunteers.

Clinical Studies

Support for the use of COREG CR extended-release capsules for the treatment of mild to-severe heart failure and for patients with left ventricular dysfunction following myocardial infarction is based on the equivalence of pharmacokinetic and pharmacodynamic (β1-blockade) parameters between COREG CR and immediate-release carvedilol [see CLINICAL PHARMACOLOGY].

The clinical trials performed with immediate-release carvedilol in heart failure and left ventricular dysfunction following myocardial infarction are presented below.

Heart Failure

A total of 6,975 patients with mild-to-severe heart failure were evaluated in placebo-controlled and active-controlled studies of immediate-release carvedilol.

Mild-to-Moderate Heart Failure

Carvedilol was studied in 5 multicenter, placebo-controlled studies, and in 1 active-controlled study (COMET study) involving patients with mild-to-moderate heart failure.

Four US multicenter, double-blind, placebo-controlled studies enrolled 1,094 patients (696 randomized to carvedilol) with NYHA class II-III heart failure and ejection fraction ≤ 0.35. The vast majority were on digitalis, diuretics, and an ACE inhibitor at study entry. Patients were assigned to the studies based upon exercise ability. An Australia-New Zealand double-blind, placebo-controlled study enrolled 415 patients (half randomized to immediate-release carvedilol) with less severe heart failure. All protocols excluded patients expected to undergo cardiac transplantation during the 7.5 to 15 months of double-blind follow-up. All randomized patients had tolerated a 2-week course on immediate-release carvedilol 6.25 mg twice daily.

In each study, there was a primary end point, either progression of heart failure (1 US study) or exercise tolerance (2 US studies meeting enrollment goals and the Australia-New Zealand study). There were many secondary end points specified in these studies, including NYHA classification, patient and physician global assessments, and cardiovascular hospitalization. Other analyses not prospectively planned included the sum of deaths and total cardiovascular hospitalizations. In situations where the primary end points of a trial do not show a significant benefit of treatment, assignment of significance values to the other results is complex, and such values need to be interpreted cautiously.

The results of the US and Australia-New Zealand trials were as follows:

Slowing Progression of Heart Failure: One US multicenter study (366 subjects) had as its primary end point the sum of cardiovascular mortality, cardiovascular hospitalization, and sustained increase in heart failure medications. Heart failure progression was reduced, during an average follow-up of 7 months, by 48% (p = 0.008).

In the Australia-New Zealand study, death and total hospitalizations were reduced by about 25% over 18 to 24 months. In the 3 largest US studies, death and total hospitalizations were reduced by 19%, 39%, and 49%, nominally statistically significant in the last 2 studies. The Australia-New Zealand results were statistically borderline.

Functional Measures: None of the multicenter studies had NYHA classification as a primary end point, but all such studies had it as a secondary end point. There was at least a trend toward improvement in NYHA class in all studies. Exercise tolerance was the primary end point in 3 studies; in none was a statistically significant effect found.

Subjective Measures: Health-related quality of life, as measured with a standard questionnaire (a primary end point in 1 study), was unaffected by carvedilol. However, patients' and investigators' global assessments showed significant improvement in most studies.

Mortality: Death was not a pre-specified end point in any study, but was analyzed in all studies. Overall, in these 4 US trials, mortality was reduced, nominally significantly so in 2 studies.

The COMET Trial

In this double-blind trial, 3,029 patients with NYHA class II-IV heart failure (left ventricular ejection fraction ≤ 35%) were randomized to receive either carvedilol (target dose: 25 mg twice daily) or immediate-release metoprolol tartrate (target dose: 50 mg twice daily). The mean age of the patients was approximately 62 years, 80% were males, and the mean left ventricular ejection fraction at baseline was 26%. Approximately 96% of the patients had NYHA class II or III heart failure. Concomitant treatment included diuretics (99%), ACE inhibitors (91%), digitalis (59%), aldosterone antagonists (11%), and “statin” lipid lowering agents (21%). The mean duration of follow-up was 4.8 years. The mean dose of carvedilol was 42 mg per day.

The study had 2 primary end points: all-cause mortality and the composite of death plus hospitalization for any reason. The results of COMET are presented in Table 5 below. All-cause mortality carried most of the statistical weight and was the primary determinant of the study size. All-cause mortality was 34% in the patients treated with carvedilol and was 40% in the immediate-release metoprolol group (p = 0.0017; hazard ratio = 0.83, 95% CI 0.74–0.93). The effect on mortality was primarily due to a reduction in cardiovascular death. The difference between the 2 groups with respect to the composite end point was not significant (p = 0.122). The estimated mean survival was 8.0 years with carvedilol and 6.6 years with immediate-release metoprolol.

Table 5: Results of COMET

End point Carvedilol
N = 1,511
N = 1,518
Hazard ratio (95% CI)
All-cause mortality 34% 40% 0.83 0.74 – 0.93
Mortality + all hospitalization 74% 76% 0.94 0.86 – 1.02
Cardiovascular death 30% 35% 0.80 0.70 – 0.90
Sudden death 14% 17% 0.81 0.68 – 0.97
Death due to circulatory failure 11% 13% 0.83 0.67 – 1.02
Death due to stroke 0.9% 2.5% 0.33 0.18 – 0.62

It is not known whether this formulation of metoprolol at any dose or this low dose of metoprolol in any formulation has any effect on survival or hospitalization in patients with heart failure. Thus, this trial extends the time over which carvedilol manifests benefits on survival in heart failure, but it is not evidence that carvedilol improves outcome over the formulation of metoprolol (TOPROL-XL®) with benefits in heart failure.

Severe Heart Failure (COPERNICUS)

In a double-blind study, 2,289 patients with heart failure at rest or with minimal exertion and left ventricular ejection fraction < 25% (mean 20%), despite digitalis (66%), diuretics (99%), and ACE inhibitors (89%) were randomized to placebo or carvedilol. Carvedilol was titrated from a starting dose of 3.125 mg twice daily to the maximum tolerated dose or up to 25 mg twice daily over a minimum of 6 weeks. Most subjects achieved the target dose of 25 mg. The study was conducted in Eastern and Western Europe, the United States, Israel, and Canada. Similar numbers of subjects per group (about 100) withdrew during the titration period.

The primary end point of the trial was all-cause mortality, but cause-specific mortality and the risk of death or hospitalization (total, cardiovascular [CV], or heart failure [HF]) were also examined. The developing trial data were followed by a data monitoring committee, and mortality analyses were adjusted for these multiple looks. The trial was stopped after a median follow-up of 10 months because of an observed 35% reduction in mortality (from 19.7% per patient year on placebo to 12.8% on carvedilol, hazard ratio 0.65, 95% CI 0.52 – 0.81, p = 0.0014, adjusted) (see Figure 1). The results of COPERNICUS are shown in Table 6.

Table 6. Results of COPERNICUS Trial in Patients With Severe Heart Failure

End point Placebo
(N = 1,133)
(N = 1,156)
Hazard ratio (95% CI) % Reduction Nominal p value
Mortality 190 130 0.65 (0.52 – 0.81) 35 0.00013
Mortality + all hospitalization 507 425 0.76 (0.67 – 0.87) 24 0.00004
Mortality + CV hospitalization 395 314 0.73 (0.63 – 0.84) 27 0.00002
Mortality + HF hospitalization 357 271 0.69 (0.59 – 0.81) 31 0.000004
Cardiovascular = CV; Heart failure = HF

Figure 1: Survival Analysis for COPERNICUS (intent-to-treat)

Survival Analysis for COPERNICUS - Illustration

The effect on mortality was principally the result of a reduction in the rate of sudden death among patients without worsening heart failure.

Patients' global assessments, in which carvedilol-treated patients were compared to placebo, were based on pre-specified, periodic patient self-assessments regarding whether clinical status post-treatment showed improvement, worsening, or no change compared to baseline. Patients treated with carvedilol showed significant improvements in global assessments compared with those treated with placebo in COPERNICUS.

The protocol also specified that hospitalizations would be assessed. Fewer patients on immediate-release carvedilol than on placebo were hospitalized for any reason (372 versus 432, p = 0.0029), for cardiovascular reasons (246 versus 314, p = 0.0003), or for worsening heart failure (198 versus 268, p = 0.0001).

Immediate-release carvedilol had a consistent and beneficial effect on all-cause mortality as well as the combined end points of all-cause mortality plus hospitalization (total, CV, or for heart failure) in the overall study population and in all subgroups examined, including men and women, elderly and non-elderly, blacks and non-blacks, and diabetics and non-diabetics (see Figure 2).

Figure 2: Effects on Mortality for Subgroups in COPERNICUS

Effects on Mortality for Subgroups in COPERNICUS - Illustration

Although the clinical trials used twice-daily dosing, clinical pharmacologic and pharmacokinetic data provide a reasonable basis for concluding that once-daily dosing with COREG CR should be adequate in the treatment of heart failure.

Left Ventricular Dysfunction Following Myocardial Infarction

CAPRICORN was a double-blind study comparing carvedilol and placebo in 1,959 patients with a recent myocardial infarction (within 21 days) and left ventricular ejection fraction of ≤ 40%, with (47%) or without symptoms of heart failure. Patients given carvedilol received 6.25 mg twice daily, titrated as tolerated to 25 mg twice daily. Patients had to have a systolic blood pressure > 90 mm Hg, a sitting heart rate > 60 beats/minute, and no contraindication to β-blocker use. Treatment of the index infarction included aspirin (85%), IV or oral β-blockers (37%), nitrates (73%), heparin (64%), thrombolytics (40%), and acute angioplasty (12%). Background treatment included ACE inhibitors or angiotensin receptor blockers (97%), anticoagulants (20%), lipid-lowering agents (23%), and diuretics (34%). Baseline population characteristics included an average age of 63 years, 74% male, 95% Caucasian, mean blood pressure 121/74 mm Hg, 22% with diabetes, and 54% with a history of hypertension. Mean dosage achieved of carvedilol was 20 mg twice daily; mean duration of follow-up was 15 months.

All-cause mortality was 15% in the placebo group and 12% in the carvedilol group, indicating a 23% risk reduction in patients treated with carvedilol (95% CI 2% to 40%, p = 0.03), as shown in Figure 3. The effects on mortality in various subgroups are shown in Figure 4. Nearly all deaths were cardiovascular (which were reduced by 25% by carvedilol), and most of these deaths were sudden or related to pump failure (both types of death were reduced by carvedilol). Another study end point, total mortality and all-cause hospitalization, did not show a significant improvement.

There was also a significant 40% reduction in fatal or non-fatal myocardial infarction observed in the group treated with carvedilol (95% CI 11% to 60%, p = 0.01). A similar reduction in the risk of myocardial infarction was also observed in a meta-analysis of placebo controlled trials of carvedilol in heart failure.

Figure 3: Survival Analysis for CAPRICORN (intent-to-treat)

Survival Analysis for CAPRICORN - Illustration

Figure 4: Effects on Mortality for Subgroups in CAPRICORN

Effects on Mortality for Subgroups in CAPRICORN - Illustration

Although the clinical trials used twice-daily dosing, clinical pharmacologic and pharmacokinetic data provide a reasonable basis for concluding that once-daily dosing with COREG CR should be adequate in the treatment of left ventricular dysfunction following myocardial infarction.


A double-blind, randomized, placebo-controlled, 8-week trial evaluated the blood pressure lowering effects of COREG CR 20 mg, 40 mg, and 80 mg once daily in 338 patients with essential hypertension (sitting diastolic blood pressure [DBP] ≥ 90 and ≤ 109 mm Hg). Of 337 evaluable patients, a total of 273 patients (81%) completed the study. Of the 64 (19%) patients withdrawn from the study, 10 (3%) were due to adverse events, 10 (3%) were due to lack of efficacy; the remaining 44 (13%) withdrew for other reasons. The mean age of the patients was approximately 53 years, 66% were male, and the mean sitting systolic blood pressure (SBP) and DBP at baseline were 150 mm Hg and 99 mm Hg, respectively. Dose titration occurred at 2-week intervals.

Statistically significant reductions in blood pressure as measured by 24-hour ambulatory blood pressure monitoring (ABPM) were observed with each dose of COREG CR compared to placebo. Placebo-subtracted mean changes from baseline in mean SBP/DBP were -6.1/-4.0 mm Hg, -9.4/-7.6 mm Hg, and -11.8/-9.2 mm Hg for COREG CR 20 mg, 40 mg, and 80 mg, respectively. Placebo-subtracted mean changes from baseline in mean trough (average of hours 20-24) SBP/DBP were -3.3/-2.8 mm Hg, -4.9/-5.2 mm Hg, and -8.4/-7.4 mm Hg for COREG CR 20 mg, 40 mg, and 80 mg, respectively. The placebo-corrected trough to peak (3-7 hr) ratio was approximately 0.6 for COREG CR 80 mg. In this study, assessments of 24-hour ABPM monitoring demonstrated statistically significant blood pressure reductions with COREG CR throughout the dosing period (Figure 5).

Figure 5: Changes from Baseline in Systolic Blood Pressure and Diastolic Blood Pressure Measured by 24-Hour ABPM

Changes from Baseline in Systolic Blood Pressure and Diastolic Blood Pressure Measured by 24-Hour ABPM - Illustration

Immediate-release carvedilol was studied in 2 placebo-controlled trials that utilized twice-daily dosing, at total daily doses of 12.5 to 50 mg. In these and other studies, the starting dose did not exceed 12.5 mg. At 50 mg/day, COREG reduced sitting trough (12-hour) blood Measured by 24-Hour ABPM pressure by about 9/5.5 mm Hg; at 25 mg/day the effect was about 7.5/3.5 mm Hg. Comparisons of trough-to-peak blood pressure showed a trough-to-peak ratio for blood pressure response of about 65%. Heart rate fell by about 7.5 beats/minute at 50 mg/day. In general, as is true for other β-blockers, responses were smaller in black than non-black patients. There were no age- or gender-related differences in response. The dose-related blood pressure response was accompanied by a dose-related increase in adverse effects [see ADVERSE REACTIONS].

Hypertension With Type 2 Diabetes Mellitus

In a double-blind study (GEMINI), carvedilol, added to an ACE inhibitor or angiotensin receptor blocker, was evaluated in a population with mild-to-moderate hypertension and well controlled type 2 diabetes mellitus. The mean HbA1c at baseline was 7.2%. COREG was titrated to a mean dose of 17.5 mg twice daily and maintained for 5 months. COREG had no adverse effect on glycemic control, based on HbA1c measurements (mean change from baseline of 0.02%, 95% CI -0.06 to 0.10, p = NS) [see WARNINGS AND PRECAUTIONS].

Last reviewed on RxList: 8/19/2011
This monograph has been modified to include the generic and brand name in many instances.

Coreg CR - User Reviews

Coreg CR User Reviews

Now you can gain knowledge and insight about a drug treatment with Patient Discussions.

Here is a collection of user reviews for the medication Coreg CR sorted by most helpful. Patient Discussions FAQs

Report Problems to the Food and Drug Administration


You are encouraged to report negative side effects of prescription drugs to the FDA. Visit the FDA MedWatch website or call 1-800-FDA-1088.


Get tips on handling your hypertension.