Recommended Topic Related To:

Effexor XR

"Jan. 7, 2013 -- Problems in thinking skills and depression may be more common in former National Football League players compared with other people as they age, according to a new study.

The research suggests the problems may be linke"...

Effexor XR

Side Effects
Interactions

SIDE EFFECTS

The information included in the Adverse Findings Observed in Short-Term, Placebo-Controlled Studies with Effexor XR subsection is based on data from a pool of three 8- and 12-week controlled clinical trials in major depressive disorder (includes two U.S. trials and one European trial), on data up to 8 weeks from a pool of five controlled clinical trials in GAD with Effexor XR®, on data up to 12 weeks from a pool of five controlled clinical trials in Social Anxiety Disorder, and on data up to 12 weeks from a pool of four controlled clinical trials in panic disorder. Information on additional adverse events associated with Effexor XR in the entire development program for the formulation and with Effexor (immediate release) is included in the Other Adverse Events Observed During the Premarketing Evaluation of Effexor and Effexor XR subsection (see also WARNINGS and PRECAUTIONS).

Adverse Findings Observed in Short-Term, Placebo-Controlled Studies with Effexor XR

Adverse Events Associated with Discontinuation of Treatment

Approximately 11% of the 357 patients who received Effexor XR® (venlafaxine hydrochloride) extended-release capsules in placebo-controlled clinical trials for major depressive disorder discontinued treatment due to an adverse experience, compared with 6% of the 285 placebo-treated patients in those studies. Approximately 18% of the 1381 patients who received Effexor XR capsules in placebo-controlled clinical trials for GAD discontinued treatment due to an adverse experience, compared with 12% of the 555 placebo-treated patients in those studies. Approximately 15% of the 819 patients who received Effexor XR capsules in placebo-controlled clinical trials for Social Anxiety Disorder discontinued treatment due to an adverse experience, compared with 5% of the 695 placebo-treated patients in those studies. Approximately 7% of the 1,001 patients who received Effexor XR capsules in placebo-controlled clinical trials for panic disorder discontinued treatment due to an adverse experience, compared with 6% of the 662 placebo-treated patients in those studies. The most common events leading to discontinuation and considered to be drug-related (ie, leading to discontinuation in at least 1% of the Effexor XR-treated patients at a rate at least twice that of placebo for any indication) are shown in Table 6.

Table 6 : Common Adverse Events Leading to Discontinuation of Treatment in Placebo-Controlled Trials1

Adverse Event Percentage of Patients Discontinuing Due to Adverse Event
Major Depressive Disorder Indication2 GAD Indication3,4 Social Anxiety Disorder Indication5 Panic Disorder Indication
Effexor XR
n = 357
Placebo
n = 285
Effexor XR
n = 1381
Placebo
n = 555
Effexor XR
n = 819
Placebo
n = 695
Effexor XR
n = 1001
Placebo
n = 662
Body as a Whole
Asthenia 3% < 1% 2% < 1% 1% 0%
Headache -- -- -- -- 1% < 1% -- --
Digestive System
Nausea 4% < 1% 8% < 1% 3% < 1% 2% < 1%
Anorexia 1% < 1% -- -- -- -- -- --
Dry Mouth 1% 0% 2% < 1% -- -- -- --
Vomiting -- -- 1% < 1% -- -- -- --
NervousSystem
Dizziness 2% 1% 2% < 1% -- --
Insomnia 1% < 1% 3% < 1% 2% < 1% 1% < 1%
Somnolence 2% < 1% 3% < 1% 2% < 1% -- --
Nervousness -- -- 2% < 1% -- -- -- --
Tremor -- -- 1% 0% -- -- -- --
Skin
Sweating -- -- 2% < 1% -- -- -- --
UrogenitalSystem
Impotence6 -- -- -- -- 2% 0% -- --
1Two of the major depressive disorder studies were flexible dose and one was fixed dose. Four of the GAD studies were fixed dose and one was flexible dose. Four of the Social Anxiety Disorder studies were flexible dose and one was fixed/flexible dose. Two of the panic disorder studies were flexible dose and two were fixed dose.
2In U.S. placebo-controlled trials for major depressive disorder, the following were also common events leading to discontinuation and were considered to be drug-related for Effexor XR-treated patients (% Effexor XR [n = 192], % Placebo [n = 202]): hypertension (1%, < 1%); diarrhea (1%, 0%); paresthesia (1%, 0%); tremor (1%, 0%); abnormal vision, mostly blurred vision (1%, 0%); and abnormal, mostly delayed, ejaculation (1%, 0%).
3In two short-term U.S. placebo-controlled trials for GAD, the following were also common events leading to discontinuation and were considered to be drug-related for Effexor XR-treated patients (% Effexor XR [n = 476]), % Placebo [n = 201]: headache (4%, < 1%); vasodilatation (1%, 0%); anorexia (2%, < 1%); dizziness (4%, 1%); thinking abnormal (1%, 0%); and abnormal vision (1%, 0%).
4In long-term placebo-controlled trials for GAD, the following was also a common event leading to discontinuation and was considered to be drug-related for Effexor XR-treated patients (% Effexor XR [n = 535], % Placebo [n = 257]): decreased libido (1%, 0%).
5In a 6-month placebo-controlled trial for Social Anxiety Disorder, the following was also a common event leading to discontinuation and was considered to be drug-related for Effexor XR-treated patients (% Effexor XR [n = 257], % Placebo [n = 129]: depression (5%, 0%), libido decrease (1%, 0%), and nervousness (3%, 0%).
6Incidence is based on the number of men (Effexor XR = 454, placebo = 357).

Adverse Events Occurring at an Incidence of 2% or More Among Effexor XR-Treated Patients Tables 7, 8, 9, and 10 enumerate the incidence, rounded to the nearest percent, of treatment-emergent adverse events that occurred during acute therapy of major depressive disorder (up to 12 weeks; dose range of 75 to 225 mg/day), of GAD (up to 8 weeks; dose range of 37.5 to 225 mg/day), of Social Anxiety Disorder (up to 12 weeks; dose range of 75 to 225 mg/day), and of panic disorder (up to 12 weeks; dose range of 37.5 to 225 mg/day), respectively, in 2% or more of patients treated with Effexor XR (venlafaxine hydrochloride) where the incidence in patients treated with Effexor XR was greater than the incidence for the respective placebo-treated patients. The table shows the percentage of patients in each group who had at least one episode of an event at some time during their treatment. Reported adverse events were classified using a standard COSTART-based Dictionary terminology.

The prescriber should be aware that these figures cannot be used to predict the incidence of side effects in the course of usual medical practice where patient characteristics and other factors differ from those which prevailed in the clinical trials. Similarly, the cited frequencies cannot be compared with figures obtained from other clinical investigations involving different treatments, uses and investigators. The cited figures, however, do provide the prescribing physician with some basis for estimating the relative contribution of drug and nondrug factors to the side effect incidence rate in the population studied.

Commonly Observed Adverse Events from Tables 7, 8, 9, and 10

Major Depressive Disorder

Note in particular the following adverse events that occurred in at least 5% of the Effexor XR patients and at a rate at least twice that of the placebo group for all placebo-controlled trials for the major depressive disorder indication (Table 7): Abnormal ejaculation, gastrointestinal complaints (nausea, dry mouth, and anorexia), CNS complaints (dizziness, somnolence, and abnormal dreams), and sweating. In the two U.S. placebo-controlled trials, the following additional events occurred in at least 5% of Effexor XR-treated patients (n = 192) and at a rate at least twice that of the placebo group: Abnormalities of sexual function (impotence in men, anorgasmia in women, and libido decreased), gastrointestinal complaints (constipation and flatulence), CNS complaints (insomnia, nervousness, and tremor), problems of special senses (abnormal vision), cardiovascular effects (hypertension and vasodilatation), and yawning.

Generalized Anxiety Disorder

Note in particular the following adverse events that occurred in at least 5% of the Effexor XR patients and at a rate at least twice that of the placebo group for all placebo-controlled trials for the GAD indication (Table 8): Abnormalities of sexual function (abnormal ejaculation and impotence), gastrointestinal complaints (nausea, dry mouth, anorexia, and constipation), problems of special senses (abnormal vision), and sweating.

Social Anxiety Disorder

Note in particular the following adverse events that occurred in at least 5% of the Effexor XR patients and at a rate at least twice that of the placebo group for the 5 placebo-controlled trials for the Social Anxiety Disorder indication (Table 9): Asthenia, gastrointestinal complaints (anorexia, constipation, dry mouth, nausea), CNS complaints (insomnia, libido decreased, nervousness, somnolence, tremor), abnormalities of sexual function (abnormal ejaculation, impotence), yawn, and sweating.

In the 6-month trial, the following adverse events occurred twice as often in the 150-225 mg/day Effexor XR group compared to the 75 mg/day Effexor XR group and placebo: vasodilation, libido decreased, tremor, yawn, abnormal vision, and impotence.

Panic Disorder

Note in particular the following adverse events that occurred in at least 5% of the Effexor XR patients and at a rate at least twice that of the placebo group for 4 placebo-controlled trials for the panic disorder indication (Table 10): gastrointestinal complaints (anorexia, constipation, dry mouth), CNS complaints (somnolence, tremor), abnormalities of sexual function (abnormal ejaculation), and sweating.

Table 7 : Treatment-Emergent Adverse Event Incidence in Short-Term Placebo-Controlled Effexor XR Clinical Trials in Patients with Major Depressive Disorder1,2

Body System
Preferred Term
% Reporting Event
Effexor XR
(n = 357)
Placebo
(n = 285)
Body as a Whole
  Asthenia 8% 7%
Cardiovascular System
  Vasodilatation3 4% 2%
  Hypertension 4% 1%
Digestive System
  Nausea 31% 12%
  Constipation 8% 5%
  Anorexia 8% 4%
  Vomiting 4% 2%
  Flatulence 4% 3%
Metabolic/Nutritional
  Weight Loss 3% 0%
Nervous System
  Dizziness 20% 9%
  Somnolence 17% 8%
  Insomnia 17% 11%
  Dry Mouth 12% 6%
  Nervousness 10% 5%
  Abnormal Dreams4 7% 2%
  Tremor 5% 2%
  Depression 3% < 1%
  Paresthesia 3% 1%
  Libido Decreased 3% < 1%
  Agitation 3% 1%
Respiratory System
  Pharyngitis 7% 6%
  Yawn 3% 0%
Skin
  Sweating 14% 3%
Special Senses
  Abnormal Vision5 4% < 1%
Urogenital System
  Abnormal Ejaculation (male)6,7 16% < 1%
  Impotence7 4% < 1%
  Anorgasmia (female)8,9 3% < 1%
1Incidence, rounded to the nearest %, for events reported by at least 2% of patients treated with Effexor XR, except the following events which had an incidence equal to or less than placebo: abdominal pain, accidental injury, anxiety, back pain, bronchitis, diarrhea, dysmenorrhea, dyspepsia, flu syndrome, headache, infection, pain, palpitation, rhinitis, and sinusitis.
2 < 1% indicates an incidence greater than zero but less than 1%.
3Mostly “hot flashes.”
4Mostly “vivid dreams,” “nightmares,” and “increased dreaming.”
5Mostly “blurred vision” and “difficulty focusing eyes.”
6Mostly “delayed ejaculation.”
7Incidence is based on the number of male patients.
8Mostly “delayed orgasm” or “anorgasmia.”
9Incidence is based on the number of female patients.

Table 8 : Treatment-Emergent Adverse Event Incidence in Short-Term Placebo-Controlled Effexor XR Clinical Trials in GAD Patients1,2

Body System Preferred Term % Reporting Event
Effexor XR
(n= 1381)
Placebo
(n = 555)
Body as a Whole
  Asthenia 12% 8%
Cardiovascular System
  Vasodilatation3 4% 2%
Digestive System
  Nausea 35% 12%
  Constipation 10% 4%
  Anorexia 8% 2%
  Vomiting 5% 3%
Nervous System
  Dizziness 16% 11%
  Dry Mouth 16% 6%
  Insomnia 15% 10%
  Somnolence 14% 8%
  Nervousness 6% 4%
  Libido Decreased 4% 2%
  Tremor 4% < 1%
  Abnormal Dreams4 3% 2%
  Hypertonia 3% 2%
  Paresthesia 2% 1%
Respiratory System
  Yawn 3% < 1%
Skin
  Sweating 10% 3%
Special Senses
  Abnormal Vision5 5% < 1%
Urogenital System
  Abnormal Ejaculation6,7 11% < 1%
  Impotence 5% < 1%
  Orgasmic Dysfunction (female)8,9 2% 0%
1Adverse events for which the Effexor XR reporting rate was less than or equal to the placebo rate are not included. These events are: abdominal pain, accidental injury, anxiety, back pain, diarrhea, dysmenorrhea, dyspepsia, flu syndrome, headache, infection, myalgia, pain, palpitation, pharyngitis, rhinitis, tinnitus, and urinary frequency.
2 < 1% means greater than zero but less than 1%.
3Mostly “hot flashes.”
4Mostly “vivid dreams,” “nightmares,” and “increased dreaming.”
5Mostly “blurred vision” and “difficulty focusing eyes.”
6Includes “delayed ejaculation” and “anorgasmia.”
7Percentage based on the number of males (Effexor XR = 525, placebo = 220).
8Includes “delayed orgasm,” “abnormal orgasm,” and “anorgasmia.”
9Percentage based on the number of females (Effexor XR = 856, placebo = 335).

Table 9 : Treatment-Emergent Adverse Event Incidence in Short-Term Placebo-Controlled Effexor XR Clinical Trials in Social Anxiety Disorder Patients1,2

Body System Preferred Term % Reporting Event
Effexor XR
(n = 819)
Placebo
(n = 695)
Body as a Whole
  Headache 38% 34%
  Asthenia 19% 9%
  Abdominal Pain 6% 4%
  Accidental Injury 4% 3%
Cardiovascular System
  Hypertension 5% 3%
  Vasodilatation3 3% 2%
  Palpitation 3% 1%
Digestive System
  Nausea 31% 9%
  Anorexia4 17% 2%
  Constipation 9% 3%
  Diarrhea 8% 6%
  Dyspepsia 7% 6%
  Vomiting 3% 2%
Metabolic/Nutritional
  Weight Loss 2% < 1%
Nervous System  
  Insomnia 24% 8%
  Somnolence 20% 8%
  Dry Mouth 17% 4%
  Dizziness 16% 8%
  Nervousness 10% 5%
  Libido Decreased 8% 2%
  Anxiety 5% 4%
  Tremor 5% 2%
  Agitation 3% 1%
  Abnormal Dreams5 3% < 1%
  Twitching 3% < 1%
Respiratory System
  Yawn 5% < 1%
Skin
  Sweating 13% 4%
Special Senses
  Abnormal Vision6 4% 2%
Urogenital System
  Abnormal Ejaculation7,8 19% < 1%
  Impotence8 6% < 1%
  Orgasmic Dysfunction9,10 5% < 1%
1Adverse events for which the Effexor XR reporting rate was less than or equal to the placebo rate are not included. These events are: arthralgia, back pain, dysmenorrhea, flu syndrome, infection, pain, pharyngitis, rhinitis, and upper respiratory infection.
2 < 1% means greater than zero but less than 1%.
3Mostly “hot flashes.”
4Mostly “decreased appetite” and “loss of appetite.”
5Mostly “vivid dreams,” “nightmares,” and “increased dreaming.”
6Mostly “blurred vision.”
7Includes “delayed ejaculation” and “anorgasmia.”
8Percentage based on the number of males (Effexor XR = 454, placebo = 357).
9Includes “abnormal orgasm” and “anorgasmia.”
10Percentage based on the number of females (Effexor XR = 365, placebo = 338).

Table 10 : Treatment-Emergent Adverse Event Incidence in Short-Term Placebo-Controlled Effexor XR Clinical Trials in Panic Disorder Patients1,2

Body System Preferred Term % Reporting Event
Effexor XR
(n= 1001)
Placebo
(n = 662)
Body as a Whole
  Asthenia 10% 8%
Cardiovascular System
  Hypertension 4% 3%
  Vasodilatation3 3% 2%
Digestive System
  Nausea 21% 14%
  Dry mouth 12% 6%
  Constipation 9% 3%
  Anorexia4 8% 3%
Nervous System
  Insomnia 17% 9%
  Somnolence 12% 6%
  Dizziness 11% 10%
  Tremor 5% 2%
  Libido Decreased 4% 2%
Skin
  Sweating 10% 2%
Urogenital System
  Abnormal Ejaculation5,6 8% < 1%
  Impotence6 4% < 1%
  Orgasmic Dysfunction7,8 2% < 1%
1Adverse events for which the Effexor XR reporting rate was less than or equal to the placebo rate are not included. These events are: abdominal pain, abnormal vision, accidental injury, anxiety, back pain, diarrhea, dysmenorrhea, dyspepsia, flu syndrome, headache, infection, nervousness, pain, paresthesia, pharyngitis, rash, rhinitis, and vomiting.
2 < 1% means greater than zero but less than 1%.
3Mostly “hot flushes.”
4Mostly “decreased appetite” and “loss of appetite.”
5Includes “delayed or retarded ejaculation” and “anorgasmia.”
6Percentage based on the number of males (Effexor XR = 335, placebo = 238).
7Includes “anorgasmia” and “delayed orgasm.”
8Percentage based on the number of females (Effexor XR = 666, placebo = 424).

Vital Sign Changes

Effexor XR (venlafaxine hydrochloride) extended-release capsules treatment for up to 12 weeks in premarketing placebo-controlled major depressive disorder trials was associated with a mean final on-therapy increase in pulse rate of approximately 2 beats per minute, compared with 1 beat per minute for placebo. Effexor XR treatment for up to 8 weeks in premarketing placebo-controlled GAD trials was associated with a mean final on-therapy increase in pulse rate of approximately 2 beats per minute, compared with less than 1 beat per minute for placebo. Effexor XR treatment for up to 12 weeks in premarketing placebo-controlled Social Anxiety Disorder trials was associated with a mean final on-therapy increase in pulse rate of approximately 3 beats per minute, compared with an increase of 1 beat per minute for placebo. Effexor XR treatment for up to 12 weeks in premarketing placebo-controlled panic disorder trials was associated with a mean final on-therapy increase in pulse rate of approximately 1 beat per minute, compared with a decrease of less than 1 beat per minute for placebo. (See the Sustained Hypertension and Elevations in Systolic and Diastolic Blood Pressure sections of WARNINGS for effects on blood pressure.)

In a flexible-dose study, with Effexor (immediate release) doses in the range of 200 to 375 mg/day and mean dose greater than 300 mg/day, the mean pulse was increased by about 2 beats per minute compared with a decrease of about 1 beat per minute for placebo.

Laboratory Changes

Serum Cholesterol

Effexor XR (venlafaxine hydrochloride) extended-release capsules treatment for up to 12 weeks in premarketing placebo-controlled trials for major depressive disorder was associated with a mean final on-therapy increase in serum cholesterol concentration of approximately 1.5 mg/dL compared with a mean final decrease of 7.4 mg/dL for placebo. Effexor XR treatment for up to 8 weeks and up to 6 months in premarketing placebo-controlled GAD trials was associated with mean final on-therapy increases in serum cholesterol concentration of approximately 1.0 mg/dL and 2.3 mg/dL, respectively while placebo subjects experienced mean final decreases of 4.9 mg/dL and 7.7 mg/dL, respectively. Effexor XR treatment for up to 12 weeks and up to 6 months in premarketing placebo-controlled Social Anxiety Disorder trials was associated with mean final on-therapy increases in serum cholesterol concentration of approximately 7.9 mg/dL and 5.6 mg/dL, respectively, compared with mean final decreases of 2.9 and 4.2 mg/dL, respectively, for placebo. Effexor XR treatment for up to 12 weeks in premarketing placebo-controlled panic disorder trials was associated with mean final on-therapy increases in serum cholesterol concentration of approximately 5.8 mg/dL compared with a mean final decrease of 3.7 mg/dL for placebo.

Patients treated with Effexor (immediate release) for at least 3 months in placebo-controlled 12month extension trials had a mean final on-therapy increase in total cholesterol of 9.1 mg/dL compared with a decrease of 7.1 mg/dL among placebo-treated patients. This increase was duration dependent over the study period and tended to be greater with higher doses. Clinically relevant increases in serum cholesterol, defined as 1) a final on-therapy increase in serum cholesterol ≥ 50 mg/dL from baseline and to a value ≥ 261 mg/dL, or 2) an average on-therapy increase in serum cholesterol ≥ 50 mg/dL from baseline and to a value ≥ 261 mg/dL, were recorded in 5.3% of venlafaxine-treated patients and 0.0% of placebo-treated patients (see PRECAUTIONS-General-Serum Cholesterol Elevation).

Serum Triglycerides

Effexor XR treatment for up to 12 weeks in pooled premarketing Social Anxiety Disorder trials was associated with a mean final on-therapy increase in fasting serum triglyceride concentration of approximately 8.2 mg/dL, compared with a mean final increase of 0.4 mg/dL for placebo. Effexor XR treatment for up to 6 months in a premarketing Social Anxiety Disorder trial was associated with a mean final on-therapy increase in fasting serum triglyceride concentration of approximately 11.8 mg/dL, compared with a mean final on-therapy increase of 1.8 mg/dL for placebo.

Effexor XR treatment for up to 12 weeks in pooled premarketing Panic Disorder trials was associated with a mean final on-therapy increase in fasting serum triglyceride concentration of approximately 5.9 mg/dL, compared with a mean final increase of 0.9 mg/dL for placebo. Effexor XR treatment for up to 6 months in a premarketing Panic Disorder trial was associated with a mean final on-therapy increase in fasting serum triglyceride concentration of approximately 9.3 mg/dL, compared with a mean final on-therapy decrease of 0.3 mg/dL for placebo.

ECG Changes

In a flexible-dose study, with Effexor (immediate release) doses in the range of 200 to 375 mg/day and mean dose greater than 300 mg/day, the mean change in heart rate was 8.5 beats per minute compared with 1.7 beats per minute for placebo. (See the Use in Patients with Concomitant Illness section of PRECAUTIONS.)

Other Adverse Events Observed During The Premarketing Evaluation Of Effexor And Effexor XR

During its premarketing assessment, multiple doses of Effexor XR were administered to 705 patients in Phase 3 major depressive disorder studies and Effexor was administered to 96 patients. During its premarketing assessment, multiple doses of Effexor XR were also administered to 1381 patients in Phase 3 GAD studies, 819 patients in Phase 3 Social Anxiety Disorder studies, and 1314 patients in Phase 3 panic disorder studies. In addition, in premarketing assessment of Effexor, multiple doses were administered to 2897 patients in Phase 2 to Phase 3 studies for major depressive disorder. The conditions and duration of exposure to venlafaxine in both development programs varied greatly, and included (in overlapping categories) open and double-blind studies, uncontrolled and controlled studies, inpatient (Effexor only) and outpatient studies, fixed-dose, and titration studies. Untoward events associated with this exposure were recorded by clinical investigators using terminology of their own choosing. Consequently, it is not possible to provide a meaningful estimate of the proportion of individuals experiencing adverse events without first grouping similar types of untoward events into a smaller number of standardized event categories.

In the tabulations that follow, reported adverse events were classified using a standard COSTART-based Dictionary terminology. The frequencies presented, therefore, represent the proportion of the 7212 patients exposed to multiple doses of either formulation of venlafaxine who experienced an event of the type cited on at least one occasion while receiving venlafaxine. All reported events are included except those already listed in Tables 7, 8, 9, and 10 and those events for which a drug cause was remote. If the COSTART term for an event was so general as to be uninformative, it was replaced with a more informative term. It is important to emphasize that, although the events reported occurred during treatment with venlafaxine, they were not necessarily caused by it.

Events are further categorized by body system and listed in order of decreasing frequency using the following definitions: frequent adverse events are defined as those occurring on one or more occasions in at least 1/100 patients; infrequent adverse events are those occurring in 1/100 to 1/1000 patients; rare events are those occurring in fewer than 1/1000 patients.

Body as a whole -Frequent: chest pain substernal, chills, fever, neck pain; Infrequent: face edema, intentional injury, malaise, moniliasis, neck rigidity, pelvic pain, photosensitivity reaction, suicide attempt, withdrawal syndrome; Rare: appendicitis, bacteremia, carcinoma, cellulitis, granuloma.

Cardiovascular system - Frequent: migraine, tachycardia; Infrequent: angina pectoris, arrhythmia, bradycardia, extrasystoles, hypotension, peripheral vascular disorder (mainly cold feet and/or cold hands), postural hypotension, syncope; Rare: aortic aneurysm, arteritis, first degree atrioventricular block, bigeminy, bundle branch block, capillary fragility, cerebral ischemia, coronary artery disease, congestive heart failure, heart arrest, hematoma, cardiovascular disorder (mitral valve and circulatory disturbance), mucocutaneous hemorrhage, myocardial infarct, pallor, sinus arrhythmia, thrombophlebitis.

Digestive system - Frequent: increased appetite; Infrequent: bruxism, colitis, dysphagia, tongue edema, eructation, esophagitis, gastritis, gastroenteritis, gastrointestinal ulcer, gingivitis, glossitis, rectal hemorrhage, hemorrhoids, melena, oral moniliasis, stomatitis, mouth ulceration; Rare: abdominal distension, biliary pain, cheilitis, cholecystitis, cholelithiasis, esophageal spasms, duodenitis, hematemesis, gastroesophageal reflux disease, gastrointestinal hemorrhage, gum hemorrhage, hepatitis, ileitis, jaundice, intestinal obstruction, liver tenderness, parotitis, periodontitis, proctitis, rectal disorder, salivary gland enlargement, increased salivation, soft stools, tongue discoloration.

Endocrine system - Rare: galactorrhoea, goiter, hyperthyroidism, hypothyroidism, thyroid nodule, thyroiditis.

Hemic and lymphatic system - Frequent: ecchymosis; Infrequent: anemia, leukocytosis, leukopenia, lymphadenopathy, thrombocythemia; Rare: basophilia, bleeding time increased, cyanosis, eosinophilia, lymphocytosis, multiple myeloma, purpura, thrombocytopenia.

Metabolic and nutritional - Frequent: edema, weight gain; Infrequent: alkaline phosphatase increased, dehydration, hypercholesteremia, hyperglycemia, hyperlipidemia, hypokalemia, SGOT (AST) increased, SGPT (ALT) increased, thirst; Rare: alcohol intolerance, bilirubinemia, BUN increased, creatinine increased, diabetes mellitus, glycosuria, gout, healing abnormal, hemochromatosis, hypercalcinuria, hyperkalemia, hyperphosphatemia, hyperuricemia, hypocholesteremia, hypoglycemia, hyponatremia, hypophosphatemia, hypoproteinemia, uremia.

Musculoskeletal system - Infrequent: arthritis, arthrosis, bone spurs, bursitis, leg cramps, myasthenia, tenosynovitis; Rare: bone pain, pathological fracture, muscle cramp, muscle spasms, musculoskeletal stiffness, myopathy, osteoporosis, osteosclerosis, plantar fasciitis, rheumatoid arthritis, tendon rupture.

Nervous system - Frequent: amnesia, confusion, depersonalization, hypesthesia, thinking abnormal, trismus, vertigo; Infrequent: akathisia, apathy, ataxia, circumoral paresthesia, CNS stimulation, emotional lability, euphoria, hallucinations, hostility, hyperesthesia, hyperkinesia, hypotonia, incoordination, libido increased, manic reaction, myoclonus, neuralgia, neuropathy, psychosis, seizure, abnormal speech, stupor, suicidal ideation; Rare: abnormal/changed behavior, adjustment disorder, akinesia, alcohol abuse, aphasia, bradykinesia, buccoglossal syndrome, cerebrovascular accident, feeling drunk, loss of consciousness, delusions, dementia, dystonia, energy increased, facial paralysis, abnormal gait, Guillain-Barre Syndrome, homicidal ideation, hyperchlorhydria, hypokinesia, hysteria, impulse control difficulties, motion sickness, neuritis, nystagmus, paranoid reaction, paresis, psychotic depression, reflexes decreased, reflexes increased, torticollis.

Respiratory system - Frequent: cough increased, dyspnea; Infrequent: asthma, chest congestion, epistaxis, hyperventilation, laryngismus, laryngitis, pneumonia, voice alteration; Rare: atelectasis, hemoptysis, hypoventilation, hypoxia, larynx edema, pleurisy, pulmonary embolus, sleep apnea.

Skin and appendages -Frequent: pruritus; Infrequent: acne, alopecia, contact dermatitis, dry skin, eczema, maculopapular rash, psoriasis, urticaria; Rare: brittle nails, erythema nodosum, exfoliative dermatitis, lichenoid dermatitis, hair discoloration, skin discoloration, furunculosis, hirsutism, leukoderma, miliaria, petechial rash, pruritic rash, pustular rash, vesiculobullous rash, seborrhea, skin atrophy, skin hypertrophy, skin striae, sweating decreased.

Special senses - Frequent: abnormality of accommodation, mydriasis, taste perversion; Infrequent: conjunctivitis, diplopia, dry eyes, eye pain, otitis media, parosmia, photophobia, taste loss; Rare: blepharitis, cataract, chromatopsia, conjunctival edema, corneal lesion, deafness, exophthalmos, eye hemorrhage, angle-closure glaucoma, retinal hemorrhage, subconjunctival hemorrhage, hyperacusis, keratitis, labyrinthitis, miosis, papilledema, decreased pupillary reflex, otitis externa, scleritis, uveitis, visual field defect.

Urogenital system - Frequent: albuminuria, urination impaired; Infrequent: amenorrhea,* cystitis, dysuria, hematuria, kidney calculus, kidney pain, leukorrhea,* menorrhagia,* metrorrhagia,* nocturia, breast pain, polyuria, pyuria, prostatic disorder (prostatitis, enlarged prostate, and prostate irritability,* urinary incontinence, urinary retention, urinary urgency, vaginal hemorrhage,* vaginitis*; Rare: abortion,* anuria, breast discharge, breast engorgement, balanitis,* breast enlargement, endometriosis,* female lactation,* fibrocystic breast, calcium crystalluria, cervicitis,* orchitis,* ovarian cyst,* bladder pain, prolonged erection,* gynecomastia (male),* hypomenorrhea,* kidney function abnormal, mastitis, menopause,* pyelonephritis, oliguria, salpingitis,* urolithiasis, uterine hemorrhage,* uterine spasm,* vaginal dryness.*

* Based on the number of men and women as appropriate.

Postmarketing Reports

Adverse Events

Voluntary reports of other adverse events temporally associated with the use of venlafaxine that have been received since market introduction and that may have no causal relationship with the use of venlafaxine include the following: agranulocytosis, anaphylaxis, angioedema, aplastic anemia, catatonia, congenital anomalies, impaired coordination and balance, CPK increased, deep vein thrombophlebitis, delirium, EKG abnormalities such as QT prolongation; cardiac arrhythmias including atrial fibrillation, supraventricular tachycardia, ventricular extrasystoles, and rare reports of ventricular fibrillation and ventricular tachycardia, including torsade de pointes; toxic epidermal necrolysis/Stevens-Johnson Syndrome, erythema multiforme, extrapyramidal symptoms (including dyskinesia and tardive dyskinesia), angle-closure glaucoma, hemorrhage (including eye and gastrointestinal bleeding), hepatic events (including GGT elevation; abnormalities of unspecified liver function tests; liver damage, necrosis, or failure; and fatty liver), interstitial lung disease, involuntary movements, LDH increased, neutropenia, night sweats, pancreatitis, pancytopenia, panic, prolactin increased, renal failure, rhabdomyolysis, shock-like electrical sensations or tinnitus (in some cases, subsequent to the discontinuation of venlafaxine or tapering of dose), and syndrome of inappropriate antidiuretic hormone secretion (usually in the elderly).

Drug Interactions

There have been reports of elevated clozapine levels that were temporally associated with adverse events, including seizures, following the addition of venlafaxine. There have been reports of increases in prothrombin time, partial thromboplastin time, or INR when venlafaxine was given to patients receiving warfarin therapy.

Drug Abuse And Dependence

Controlled Substance Class

Effexor XR (venlafaxine hydrochloride) extended-release capsules is not a controlled substance.

Physical And Psychological Dependence

In vitro studies revealed that venlafaxine has virtually no affinity for opiate, benzodiazepine, phencyclidine (PCP), or N-methyl-D-aspartic acid (NMDA) receptors.

Venlafaxine was not found to have any significant CNS stimulant activity in rodents. In primate drug discrimination studies, venlafaxine showed no significant stimulant or depressant abuse liability.

Discontinuation effects have been reported in patients receiving venlafaxine (see DOSAGE AND ADMINISTRATION).

While venlafaxine has not been systematically studied in clinical trials for its potential for abuse, there was no indication of drug-seeking behavior in the clinical trials. However, it is not possible to predict on the basis of premarketing experience the extent to which a CNS active drug will be misused, diverted, and/or abused once marketed. Consequently, physicians should carefully evaluate patients for history of drug abuse and follow such patients closely, observing them for signs of misuse or abuse of venlafaxine (eg, development of tolerance, incrementation of dose, drug-seeking behavior).

Read the Effexor XR (venlafaxine hydrochloride extended-release) Side Effects Center for a complete guide to possible side effects

DRUG INTERACTIONS

As with all drugs, the potential for interaction by a variety of mechanisms is a possibility.

Alcohol

A single dose of ethanol (0.5 g/kg) had no effect on the pharmacokinetics of venlafaxine or O-desmethylvenlafaxine (ODV) when venlafaxine was administered at 150 mg/day in 15 healthy male subjects. Additionally, administration of venlafaxine in a stable regimen did not exaggerate the psychomotor and psychometric effects induced by ethanol in these same subjects when they were not receiving venlafaxine.

Cimetidine

Concomitant administration of cimetidine and venlafaxine in a steady-state study for both drugs resulted in inhibition of first-pass metabolism of venlafaxine in 18 healthy subjects. The oral clearance of venlafaxine was reduced by about 43%, and the exposure (AUC) and maximum concentration (Cmax) of the drug were increased by about 60%. However, coadministration of cimetidine had no apparent effect on the pharmacokinetics of ODV, which is present in much greater quantity in the circulation than venlafaxine. The overall pharmacological activity of venlafaxine plus ODV is expected to increase only slightly, and no dosage adjustment should be necessary for most normal adults. However, for patients with pre-existing hypertension, and for elderly patients or patients with hepatic dysfunction, the interaction associated with the concomitant use of venlafaxine and cimetidine is not known and potentially could be more pronounced. Therefore, caution is advised with such patients.

Diazepam

Under steady-state conditions for venlafaxine administered at 150 mg/day, a single 10 mg dose of diazepam did not appear to affect the pharmacokinetics of either venlafaxine or ODV in 18 healthy male subjects. Venlafaxine also did not have any effect on the pharmacokinetics of diazepam or its active metabolite, desmethyldiazepam, or affect the psychomotor and psychometric effects induced by diazepam.

Haloperidol

Venlafaxine administered under steady-state conditions at 150 mg/day in 24 healthy subjects decreased total oral-dose clearance (Cl/F) of a single 2 mg dose of haloperidol by 42%, which resulted in a 70% increase in haloperidol AUC. In addition, the haloperidol Cmax increased 88% when coadministered with venlafaxine, but the haloperidol elimination half-life (t1/2) was unchanged. The mechanism explaining this finding is unknown.

Lithium

The steady-state pharmacokinetics of venlafaxine administered at 150 mg/day were not affected when a single 600 mg oral dose of lithium was administered to 12 healthy male subjects. ODV also was unaffected. Venlafaxine had no effect on the pharmacokinetics of lithium (see also CNS-Active Drugs, below).

Drugs Highly Bound to Plasma Proteins

Venlafaxine is not highly bound to plasma proteins; therefore, administration of Effexor XR to a patient taking another drug that is highly protein bound should not cause increased free concentrations of the other drug.

Drugs that Interfere with Hemostasis (e.g., NSAIDs, Aspirin, and Warfarin)

Serotonin release by platelets plays an important role in hemostasis. Epidemiological studies of the case-control and cohort design that have demonstrated an association between use of psychotropic drugs that interfere with serotonin reuptake and the occurrence of upper gastrointestinal bleeding have also shown that concurrent use of an NSAID or aspirin may potentiate this risk of bleeding. Altered anticoagulant effects, including increased bleeding, have been reported when SSRIs and SNRIs are coadministered with warfarin. Patients receiving warfarin therapy should be carefully monitored when Effexor XR is initiated or discontinued.

Drugs that Inhibit Cytochrome P450 Isoenzymes

CYP2D6 Inhibitors: In vitro and in vivo studies indicate that venlafaxine is metabolized to its active metabolite, ODV, by CYP2D6, the isoenzyme that is responsible for the genetic polymorphism seen in the metabolism of many antidepressants. Therefore, the potential exists for a drug interaction between drugs that inhibit CYP2D6-mediated metabolism of venlafaxine, reducing the metabolism of venlafaxine to ODV, resulting in increased plasma concentrations of venlafaxine and decreased concentrations of the active metabolite. CYP2D6 inhibitors such as quinidine would be expected to do this, but the effect would be similar to what is seen in patients who are genetically CYP2D6 poor metabolizers (see Metabolism and Excretion under CLINICAL PHARMACOLOGY). Therefore, no dosage adjustment is required when venlafaxine is coadministered with a CYP2D6 inhibitor.

Ketoconazole: A pharmacokinetic study with ketoconazole 100 mg b.i.d. with a single dose of venlafaxine 50 mg in extensive metabolizers (EM; n = 14) and 25 mg in poor metabolizers (PM; n = 6) of CYP2D6 resulted in higher plasma concentrations of both venlafaxine and O-desmethylvenlafaxine (ODV) in most subjects following administration of ketoconazole. Venlafaxine Cmax increased by 26% in EM subjects and 48% in PM subjects. Cmax values for ODV increased by 14% and 29% in EM and PM subjects, respectively.

Venlafaxine AUC increased by 21% in EM subjects and 70% in PM subjects (range in PMs -2% to 206%), and AUC values for ODV increased by 23% and 33% in EM and PM (range in PMs -38% to 105%) subjects, respectively. Combined AUCs of venlafaxine and ODV increased on average by approximately 23% in EMs and 53% in PMs (range in PMs 4% to 134%).

Concomitant use of CYP3A4 inhibitors and venlafaxine may increase levels of venlafaxine and ODV. Therefore, caution is advised if a patient's therapy includes a CYP3A4 inhibitor and venlafaxine concomitantly.

Drugs Metabolized by Cytochrome P450 Isoenzymes

CYP2D6: In vitro studies indicate that venlafaxine is a relatively weak inhibitor of CYP2D6. These findings have been confirmed in a clinical drug interaction study comparing the effect of venlafaxine with that of fluoxetine on the CYP2D6-mediated metabolism of dextromethorphan to dextrorphan.

Imipramine - Venlafaxine did not affect the pharmacokinetics of imipramine and 2-OH-imipramine. However, desipramine AUC, Cmax, and Cmin increased by about 35% in the presence of venlafaxine. The 2-OH-desipramine AUC's increased by at least 2.5 fold (with venlafaxine 37.5 mg q12h) and by 4.5 fold (with venlafaxine 75 mg q12h). Imipramine did not affect the pharmacokinetics of venlafaxine and ODV. The clinical significance of elevated 2-OH-desipramine levels is unknown.

Metoprolol - Concomitant administration of venlafaxine (50 mg every 8 hours for 5 days) and metoprolol (100 mg every 24 hours for 5 days) to 18 healthy male subjects in a pharmacokinetic interaction study for both drugs resulted in an increase of plasma concentrations of metoprolol by approximately 30-40% without altering the plasma concentrations of its active metabolite, α-hydroxymetoprolol. Metoprolol did not alter the pharmacokinetic profile of venlafaxine or its active metabolite, O-desmethylvenlafaxine.

Venlafaxine appeared to reduce the blood pressure lowering effect of metoprolol in this study. The clinical relevance of this finding for hypertensive patients is unknown. Caution should be exercised with co-administration of venlafaxine and metoprolol.

Venlafaxine treatment has been associated with dose-related increases in blood pressure in some patients. It is recommended that patients receiving Effexor XR have regular monitoring of blood pressure (see WARNINGS).

Risperidone - Venlafaxine administered under steady-state conditions at 150 mg/day slightly inhibited the CYP2D6-mediated metabolism of risperidone (administered as a single 1 mg oral dose) to its active metabolite, 9-hydroxyrisperidone, resulting in an approximate 32% increase in risperidone AUC. However, venlafaxine coadministration did not significantly alter the pharmacokinetic profile of the total active moiety (risperidone plus 9-hydroxyrisperidone).

CYP3A4: Venlafaxine did not inhibit CYP3A4 in vitro. This finding was confirmed in vivo by clinical drug interaction studies in which venlafaxine did not inhibit the metabolism of several CYP3A4 substrates, including alprazolam, diazepam, and terfenadine.

Indinavir - In a study of 9 healthy volunteers, venlafaxine administered under steady-state conditions at 150 mg/day resulted in a 28% decrease in the AUC of a single 800 mg oral dose of indinavir and a 36% decrease in indinavir Cmax. Indinavir did not affect the pharmacokinetics of venlafaxine and ODV. The clinical significance of this finding is unknown.

CYP1A2: Venlafaxine did not inhibit CYP1A2 in vitro. This finding was confirmed in vivo by a clinical drug interaction study in which venlafaxine did not inhibit the metabolism of caffeine, a CYP1A2 substrate.

CYP2C9: Venlafaxine did not inhibit CYP2C9 in vitro. In vivo, venlafaxine 75 mg by mouth every 12 hours did not alter the pharmacokinetics of a single 500 mg dose of tolbutamide or the CYP2C9 mediated formation of 4-hydroxy-tolbutamide.

CYP2C19: Venlafaxine did not inhibit the metabolism of diazepam, which is partially metabolized by CYP2C19 (see Diazepam above).

Monoamine Oxidase Inhibitors

See CONTRAINDICATIONS, WARNINGS, and DOSAGE AND ADMINISTRATION.

CNS-Active Drugs

The risk of using venlafaxine in combination with other CNS-active drugs has not been systematically evaluated (except in the case of those CNS-active drugs noted above). Consequently, caution is advised if the concomitant administration of venlafaxine and such drugs is required. (See CONTRAINDICATIONS and WARNINGS, Serotonin Syndrome)

Serotonergic Drugs: See CONTRAINDICATIONS, WARNINGS, and DOSAGE AND ADMINISTRATION.

Triptans: There have been rare postmarketing reports of serotonin syndrome with use of an SSRI and a triptan. If concomitant treatment of Effexor XR with a triptan is clinically warranted, careful observation of the patient is advised, particularly during treatment initiation and dose increases (see WARNINGS, Serotonin Syndrome).

Drug-Laboratory Test Interactions

False-positive urine immunoassay screening tests for phencyclidine (PCP) and amphetamine have been reported in patients taking venlafaxine. This is due to lack of specificity of the screening tests. False positive test results may be expected for several days following discontinuation of venlafaxine therapy. Confirmatory tests, such as gas chromatography/mass spectrometry, will distinguish venlafaxine from PCP and amphetamine.

Electroconvulsive Therapy

There are no clinical data establishing the benefit of electroconvulsive therapy combined with Effexor XR (venlafaxine hydrochloride) extended-release capsules treatment.

Postmarketing Spontaneous Drug Interaction Reports

See ADVERSE REACTIONS, Postmarketing Reports.

Read the Effexor XR Drug Interactions Center for a complete guide to possible interactions

Last reviewed on RxList: 7/21/2014
This monograph has been modified to include the generic and brand name in many instances.

Side Effects
Interactions
A A A

Effexor XR - User Reviews

Effexor XR User Reviews

Now you can gain knowledge and insight about a drug treatment with Patient Discussions.

Here is a collection of user reviews for the medication Effexor XR sorted by most helpful. Patient Discussions FAQs

Report Problems to the Food and Drug Administration

 

You are encouraged to report negative side effects of prescription drugs to the FDA. Visit the FDA MedWatch website or call 1-800-FDA-1088.


Emotional Wellness

Get tips on therapy and treatment.