Recommended Topic Related To:

Eliquis

"May 31, 2013 -- More than 2 million Americans have an abnormal heart rhythm known as atrial fibrillation, raising their risk of blood clots leading to stroke. For many years, the blood thinner Coumadin (warfarin) was the only game in town to help"...

Eliquis

CLINICAL PHARMACOLOGY

Mechanism Of Action

Apixaban is a selective inhibitor of FXa. It does not require antithrombin III for antithrombotic activity. Apixaban inhibits free and clot-bound FXa, and prothrombinase activity. Apixaban has no direct effect on platelet aggregation, but indirectly inhibits platelet aggregation induced by thrombin. By inhibiting FXa, apixaban decreases thrombin generation and thrombus development.

Pharmacodynamics

As a result of FXa inhibition, apixaban prolongs clotting tests such as prothrombin time (PT), INR, and activated partial thromboplastin time (aPTT). Changes observed in these clotting tests at the expected therapeutic dose, however, are small, subject to a high degree of variability, and not useful in monitoring the anticoagulation effect of apixaban.

The Rotachrom® Heparin chromogenic assay was used to measure the effect of apixaban on FXa activity in humans during the apixaban development program. A concentration-dependent increase in anti-FXa activity was observed in the dose range tested and was similar in healthy subjects and patients with AF.

This test is not recommended for assessing the anticoagulant effect of apixaban.

Pharmacodynamic Drug Interaction Studies

Pharmacodynamic drug interaction studies with aspirin, clopidogrel, aspirin and clopidogrel, prasugrel, enoxaparin, and naproxen were conducted. No pharmacodynamic interactions were observed with aspirin, clopidogrel, or prasugrel [see WARNINGS AND PRECAUTIONS]. A 50% to 60% increase in anti-FXa activity was observed when apixaban was coadministered with enoxaparin or naproxen.

Specific Populations

Renal impairment: Anti-FXa activity adjusted for exposure to apixaban was similar across renal function categories.

Hepatic impairment: Changes in anti-FXa activity were similar in patients with mild-tomoderate hepatic impairment and healthy subjects. However, in patients with moderate hepatic impairment, there is no clear understanding of the impact of this degree of hepatic function impairment on the coagulation cascade and its relationship to efficacy and bleeding. Patients with severe hepatic impairment were not studied.

Cardiac Electrophysiology

Apixaban has no effect on the QTc interval in humans at doses up to 50 mg.

Pharmacokinetics

Apixaban demonstrates linear pharmacokinetics with dose-proportional increases in exposure for oral doses up to 10 mg.

Absorption

The absolute bioavailability of apixaban is approximately 50% for doses up to 10 mg of ELIQUIS. Food does not affect the bioavailability of apixaban. Maximum concentrations (Cmax) of apixaban appear 3 to 4 hours after oral administration of ELIQUIS. At doses ≥ 25 mg, apixaban displays dissolution-limited absorption with decreased bioavailability. Following administration of a crushed 5 mg ELIQUIS tablet that was suspended in 60 mL D5W and delivered through a nasogastric tube (NGT), exposure was similar to that seen in other clinical trials involving healthy volunteers receiving a single oral 5 mg tablet dose.

Distribution

Plasma protein binding in humans is approximately 87%. The volume of distribution (Vss) is approximately 21 liters.

Metabolism

Approximately 25% of an orally administered apixaban dose is recovered in urine and feces as metabolites. Apixaban is metabolized mainly via CYP3A4 with minor contributions from CYP1A2, 2C8, 2C9, 2C19, and 2J2. O-demethylation and hydroxylation at the 3-oxopiperidinyl moiety are the major sites of biotransformation.

Unchanged apixaban is the major drug-related component in human plasma; there are no active circulating metabolites.

Elimination

Apixaban is eliminated in both urine and feces. Renal excretion accounts for about 27% of total clearance. Biliary and direct intestinal excretion contributes to elimination of apixaban in the feces.

Apixaban has a total clearance of approximately 3.3 L/hour and an apparent half-life of approximately 12 hours following oral administration.

Apixaban is a substrate of transport proteins: P-gp and breast cancer resistance protein.

Drug Interaction Studies

In vitro apixaban studies at concentrations significantly greater than therapeutic exposures, no inhibitory effect on the activity of CYP1A2, CYP2A6, CYP2B6, CYP2C8, CYP2C9, CYP2D6, CYP3A4/5, or CYP2C19, nor induction effect on the activity of CYP1A2, CYP2B6, or CYP3A4/5 were observed. Therefore, apixaban is not expected to alter the metabolic clearance of coadministered drugs that are metabolized by these enzymes. Apixaban is not a significant inhibitor of P-gp.

The effects of coadministered drugs on the pharmacokinetics of apixaban and associated dose recommendations are summarized in Figure 2 [see also WARNINGS AND PRECAUTIONS and DRUG INTERACTIONS].

Figure 2: Effect of Coadministered Drugs on the Pharmacokinetics of Apixaban

Effect of Coadministered Drugs on the Pharmacokinetics of Apixaban - Illustration

* Dashed vertical lines illustrate pharmacokinetic changes that were used to inform dosing recommendations. Dosing recommendations were also informed by clinical considerations [see WARNINGS AND PRECAUTIONS and DRUG INTERACTIONS].

In dedicated studies conducted in healthy subjects, famotidine, atenolol, prasugrel, and enoxaparin did not meaningfully alter the pharmacokinetics of apixaban.

In studies conducted in healthy subjects, apixaban did not meaningfully alter the pharmacokinetics of digoxin, naproxen, atenolol, prasugrel, or acetylsalicylic acid.

Specific Populations

The effects of level of renal impairment, age, body weight, and level of hepatic impairment on the pharmacokinetics of apixaban are summarized in Figure 3.

Figure 3: Effect of Specific Populations on the Pharmacokinetics of Apixaban

Effect of Specific Populations on the Pharmacokinetics of Apixaban - Illustration

* ESRD subjects maintained with chronic and stable hemodialysis; reported PK findings are following single dose of apixaban post hemodialysis.
† Creatinine clearance 15 to 29 mL/min.
‡ Dashed vertical lines illustrate pharmacokinetic changes that were used to inform dosing recommendations.

A study in healthy subjects comparing the pharmacokinetics in males and females showed no meaningful difference.

The results across pharmacokinetic studies in normal subjects showed no differences in apixaban pharmacokinetics among White/Caucasian, Asian, and Black/African American subjects. No dose adjustment is required based on race/ethnicity.

In subjects with ESRD, a 4-hour hemodialysis session with a dialysate flow rate of 500 mL/min and a blood flow rate in the range of 350 to 500 mL/min started 2 hours after administration of a single 5 mg dose of apixaban, the AUC of apixaban was 17% greater compared to those with normal renal function. The dialysis clearance of apixaban is approximately 18 mL/min resulting in a 14% decrease in exposure due to hemodialysis compared to off-dialysis period.

Protein binding was similar (92%-94%) between healthy controls and the on-dialysis and off-dialysis periods.

Clinical Studies

Reduction Of Risk Of Stroke And Systemic Embolism In Nonvalvular Atrial Fibrillation

ARISTOTLE

Evidence for the efficacy and safety of ELIQUIS was derived from ARISTOTLE, a multinational, double-blind study in patients with nonvalvular AF comparing the effects of ELIQUIS and warfarin on the risk of stroke and non-central nervous system (CNS) systemic embolism. In ARISTOTLE, patients were randomized to ELIQUIS 5 mg orally twice daily (or 2.5 mg twice daily in subjects with at least 2 of the following characteristics: age ≥ 80 years, body weight ≤ 60 kg, or serum creatinine ≥ 1.5 mg/dL) or to warfarin (targeted to an INR range of 2.0–3.0). Patients had to have one or more of the following additional risk factors for stroke:

The primary objective of ARISTOTLE was to determine whether ELIQUIS 5 mg twice daily (or 2.5 mg twice daily) was effective (noninferior to warfarin) in reducing the risk of stroke (ischemic or hemorrhagic) and systemic embolism. Superiority of ELIQUIS to warfarin was also examined for the primary endpoint (rate of stroke and systemic embolism), major bleeding, and death from any cause.

A total of 18,201 patients were randomized and followed on study treatment for a median of 89 weeks. Forty-three percent of patients were vitamin K antagonist (VKA) “naive,” defined as having received ≤ 30 consecutive days of treatment with warfarin or another VKA before entering the study. The mean age was 69 years and the mean CHADS2 score (a scale from 0 to 6 used to estimate risk of stroke, with higher scores predicting greater risk) was 2.1. The population was 65% male, 83% Caucasian, 14% Asian, and 1% Black. There was a history of stroke, TIA, or non-CNS systemic embolism in 19% of patients. Concomitant diseases of patients in this study included hypertension 88%, diabetes 25%, congestive heart failure (or left ventricular ejection fraction ≤ 40%) 35%, and prior myocardial infarction 14%. Patients treated with warfarin in ARISTOTLE had a mean percentage of time in therapeutic range (INR 2.0–3.0) of 62%.

ELIQUIS was superior to warfarin for the primary endpoint of reducing the risk of stroke and systemic embolism (Table 5 and Figure 4). Superiority to warfarin was primarily attributable to a reduction in hemorrhagic stroke and ischemic strokes with hemorrhagic conversion compared to warfarin. Purely ischemic strokes occurred with similar rates on both drugs.

ELIQUIS also showed significantly fewer major bleeds than warfarin [see ADVERSE REACTIONS].

Table 5: Key Efficacy Outcomes in Patients with Nonvalvular Atrial Fibrillation in ARISTOTLE (Intent-to-Treat Analysis)

  ELIQUIS
N=9120
n (%/year)
Warfarin
N=9081
n (%/year)
Hazard Ratio (95% CI) P-value
Stroke or systemic embolism 212 (1.27) 265 (1.60) 0.79 (0.66, 0.95) 0.01
  Stroke 199 (1.19) 250 (1.51) 0.79 (0.65, 0.95)  
    Ischemic without hemorrhage 140 (0.83) 136 (0.82) 1.02 (0.81, 1.29)  
    Ischemic with hemorrhagic conversion 12 (0.07) 20 (0.12) 0.60 (0.29, 1.23)  
    Hemorrhagic 40 (0.24) 78 (0.47) 0.51 (0.35, 0.75)  
    Unknown 14 (0.08) 21 (0.13) 0.65 (0.33, 1.29)  
  Systemic embolism 15 (0.09) 17 (0.10) 0.87 (0.44, 1.75)  
The primary endpoint was based on the time to first event (one per subject). Component counts are for subjects with any event, not necessarily the first.

Figure 4: Kaplan-Meier Estimate of Time to First Stroke or Systemic Embolism in ARISTOTLE (Intent-to-Treat Population)

Kaplan-Meier Estimate of Time to First Stroke or Systemic Embolism - Illustration

All-cause death was assessed using a sequential testing strategy that allowed testing for superiority if effects on earlier endpoints (stroke plus systemic embolus and major bleeding) were demonstrated. ELIQUIS treatment resulted in a significantly lower rate of all-cause death (p = 0.046) than did treatment with warfarin, primarily because of a reduction in cardiovascular death, particularly stroke deaths. Non-vascular death rates were similar in the treatment arms.

In ARISTOTLE, the results for the primary efficacy endpoint were generally consistent across most major subgroups including weight, CHADS2 score (a scale from 0 to 6 used to predict risk of stroke in patients with AF, with higher scores predicting greater risk), prior warfarin use, level of renal impairment, geographic region, ELIQUIS dose, type of AF, and aspirin use at randomization (Figure 5).

Figure 5: Stroke and Systemic Embolism Hazard Ratios by Baseline Characteristics – ARISTOTLE Study

Stroke and Systemic Embolism Hazard Ratios by Baseline Characteristics - Illustration

At the end of the ARISTOTLE study, warfarin patients who completed the study were generally maintained on a VKA with no interruption of anticoagulation. ELIQUIS patients who completed the study were generally switched to a VKA with a 2-day period of coadministration of ELIQUIS and VKA, so that some patients may not have been adequately anticoagulated after stopping ELIQUIS until attaining a stable and therapeutic INR. During the 30 days following the end of the study, there were 21 stroke or systemic embolism events in the 6791 patients (0.3%) in the ELIQUIS arm compared to 5 in the 6569 patients (0.1%) in the warfarin arm [see DOSAGE AND ADMINISTRATION].

AVERROES

In AVERROES, patients with nonvalvular atrial fibrillation thought not to be candidates for warfarin therapy were randomized to treatment with ELIQUIS 5 mg orally twice daily (or 2.5 mg twice daily in selected patients) or aspirin 81 to 324 mg once daily. The primary objective of the study was to determine if ELIQUIS was superior to aspirin for preventing the composite outcome of stroke or systemic embolism. AVERROES was stopped early on the basis of a prespecified interim analysis showing a significant reduction in stroke and systemic embolism for ELIQUIS compared to aspirin that was associated with a modest increase in major bleeding (Table 6) [see ADVERSE REACTIONS].

Table 6: Key Efficacy Outcomes in Patients with Nonvalvular Atrial Fibrillation in AVERROES

  ELIQUIS
N=2807
n (%/year)
Aspirin
N=2791
n (%/year)
Hazard Ratio (95% CI) P-value
Stroke or systemic embolism 51 (1.62) 113 (3.63) 0.45 (0.32, 0.62) < 0.0001
  Stroke
    Ischemic or undetermined 43 (1.37) 97 (3.11) 0.44 (0.31, 0.63) -
    Hemorrhagic 6 (0.19) 9 (0.28) 0.67 (0.24, 1.88) -
  Systemic embolism 2 (0.06) 13 (0.41) 0.15 (0.03, 0.68) -
MI 24 (0.76) 28 (0.89) 0.86 (0.50, 1.48) -
All-cause death 111 (3.51) 140 (4.42) 0.79 (0.62, 1.02) 0.068
  Vascular death 84 (2.65) 96 (3.03) 0.87 (0.65, 1.17) -

Prophylaxis Of Deep Vein Thrombosis Following Hip Or Knee Replacement Surgery

The clinical evidence for the effectiveness of ELIQUIS is derived from the ADVANCE-1, ADVANCE-2, and ADVANCE-3 clinical trials in adult patients undergoing elective hip (ADVANCE-3) or knee (ADVANCE-2 and ADVANCE-1) replacement surgery. A total of 11,659 patients were randomized in 3 double-blind, multi-national studies. Included in this total were 1866 patients age 75 or older, 1161 patients with low body weight ( ≤ 60 kg), 2528 patients with Body Mass Index ≥ 33 kg/m², and 625 patients with severe or moderate renal impairment.

In the ADVANCE-3 study, 5407 patients undergoing elective hip replacement surgery were randomized to receive either ELIQUIS 2.5 mg orally twice daily or enoxaparin 40 mg subcutaneously once daily. The first dose of ELIQUIS was given 12 to 24 hours post surgery, whereas enoxaparin was started 9 to 15 hours prior to surgery. Treatment duration was 32 to 38 days.

In patients undergoing elective knee replacement surgery, ELIQUIS 2.5 mg orally twice daily was compared to enoxaparin 40 mg subcutaneously once daily (ADVANCE-2, N=3057) or enoxaparin 30 mg subcutaneously every 12 hours (ADVANCE-1, N=3195). In the ADVANCE2 study, the first dose of ELIQUIS was given 12 to 24 hours post surgery, whereas enoxaparin was started 9 to 15 hours prior to surgery. In the ADVANCE-1 study, both ELIQUIS and enoxaparin were initiated 12 to 24 hours post surgery. Treatment duration in both ADVANCE-2 and ADVANCE-1 was 10 to 14 days.

In all 3 studies, the primary endpoint was a composite of adjudicated asymptomatic and symptomatic DVT, nonfatal PE, and all-cause death at the end of the double-blind intended treatment period. In ADVANCE-3 and ADVANCE-2, the primary endpoint was tested for noninferiority, then superiority, of ELIQUIS to enoxaparin. In ADVANCE-1, the primary endpoint was tested for noninferiority of ELIQUIS to enoxaparin.

The efficacy data are provided in Tables 7 and 8.

Table 7: Summary of Key Efficacy Analysis Results During the Intended Treatment Period for Patients Undergoing Elective Hip Replacement Surgery*

Events During 35-Day Treatment Period ADVANCE-3 Relative Risk (95% CI) P-value
ELIQUIS 2.5 mg po bid Enoxaparin 40 mg sc qd
Number of Patients N=1949 N=1917  
  Total VTE†/All-cause death 27 (1.39%) (0.95, 2.02) 74 (3.86%) (3.08, 4.83) 0.36 (0.22, 0.54) p < 0.0001
Number of Patients N=2708 N=2699  
  All-cause death 3 (0.11%) (0.02, 0.35) 1 (0.04%) (0.00, 0.24)  
  PE 3 (0.11%) (0.02, 0.35) 5 (0.19%) (0.07, 0.45)  
  Symptomatic DVT 1 (0.04%) (0.00, 0.24) 5 (0.19%) (0.07, 0.45)  
Number of Patients N=2196 N=2190  
  Proximal DVT‡ 7 (0.32%) (0.14, 0.68) 20 (0.91) (0.59, 1.42)  
Number of Patients N=1951 N=1908  
  Distal DVT‡ 20 (1.03%) (0.66, 1.59) 57 (2.99%) (2.31, 3.86)  
* Events associated with each endpoint were counted once per subject but subjects may have contributed events to multiple endpoints.
† Total VTE includes symptomatic and asymptomatic DVT and PE.
‡ Includes symptomatic and asymptomatic DVT.

Table 8: Summary of Key Efficacy Analysis Results During the Intended Treatment Period for Patients Undergoing Elective Knee Replacement Surgery*

Events during 12-day treatment period ADVANCE-1 ADVANCE-2
ELIQUIS 2.5 mg po bid Enoxaparin 30 mg sc q12h Relative Risk (95% CI) P-value ELIQUIS 2.5 mg po bid Enoxaparin 40 mg sc qd Relative Risk (95% CI) P-value
Number of Patients N=1157 N=1130   N=976 N=997  
Total VTE†/Allcause death 104 (8.99%) (7.47, 10.79) 100 (8.85%) (7.33, 10.66) 1.02 (0.78, 1.32) NS 147 (15.06%) (12.95, 17.46) 243 (24.37%) (21.81, 27.14) 0.62 (0.51, 0.74) p < 0.0001
Number of Patients N=1599 N=1596   N=1528 N=1529  
  All-cause death 3 (0.19%) (0.04, 0.59) 3 (0.19% ) (0.04, 0.59)   2 (0.13%) (0.01, 0.52) 0 (0%) (0.00. 0.31)  
  PE 16 (1.0%) (0.61, 1.64) 7 (0.44%) (0.20, 0.93)   4 (0.26%) (0.08, 0.70) 0 (0%) (0.00, 0.31)  
  Symptomatic DVT 3 (0.19%) (0.04, 0.59) 7 (0.44%) (0.20, 0.93)   3 (0.20%) (0.04, 0.61) 7 (0.46%) (0.20, 0.97)  
Number of Patients N=1254 N=1207   N=1192 N=1199  
  Proximal DVT‡ 9 (0.72%) (0.36, 1.39) 11 (0.91%) (0.49, 1.65)   9 (0.76%) (0.38, 1.46) 26 (2.17%) (1.47, 3.18)  
Number of Patients N=1146 N=1133   N=978 N=1000  
  Distal DVT‡ 83 (7.24%) (5.88, 8.91) 91 (8.03%) (6.58, 9.78)   142 (14.52%) (12.45, 16.88) 239 (23.9%) (21.36, 26.65)  
* Events associated with each endpoint were counted once per subject but subjects may have contributed events to multiple endpoints.
† Total VTE includes symptomatic and asymptomatic DVT and PE.
‡ Includes symptomatic and asymptomatic DVT.

The efficacy profile of ELIQUIS was generally consistent across subgroups of interest for this indication (e.g., age, gender, race, body weight, renal impairment).

Last reviewed on RxList: 4/7/2014
This monograph has been modified to include the generic and brand name in many instances.

A A A

Report Problems to the Food and Drug Administration

 

You are encouraged to report negative side effects of prescription drugs to the FDA. Visit the FDA MedWatch website or call 1-800-FDA-1088.


Women's Health

Find out what women really need.


NIH talks about Ebola on WebMD