Recommended Topic Related To:

Flovent HFA

"The U.S. Food and Drug Administration will complete its phase-out of all inhaler medical products containing chlorofluorocarbons (CFCs) by Dec. 31, 2013. This effort is to comply with an international treaty to protect the ozone layer by phasing "...

Flovent HFA

Warnings
Precautions

WARNINGS

Included as part of the PRECAUTIONS section.

PRECAUTIONS

Local Effects

In clinical studies, the development of localized infections of the mouth and pharynx with Candida albicans has occurred in patients treated with FLOVENT HFA. When such an infection develops, it should be treated with appropriate local or systemic (i.e., oral antifungal) therapy while treatment with FLOVENT HFA continues, but at times therapy with FLOVENT HFA may need to be interrupted. Patients should rinse the mouth after inhalation of FLOVENT HFA [see ADVERSE REACTIONS].

Acute Asthma Episodes

FLOVENT HFA is not to be regarded as a bronchodilator and is not indicated for rapid relief of bronchospasm. Patients should be instructed to contact their physicians immediately when episodes of asthma that are not responsive to bronchodilators occur during the course of treatment with FLOVENT HFA. During such episodes, patients may require therapy with oral corticosteroids.

Immunosuppression

Persons who are using drugs that suppress the immune system are more susceptible to infections than healthy individuals. Chickenpox and measles, for example, can have a more serious or even fatal course in susceptible children or adults using corticosteroids. In such children or adults who have not had these diseases or been properly immunized, particular care should be taken to avoid exposure. How the dose, route, and duration of corticosteroid administration affect the risk of developing a disseminated infection is not known. The contribution of the underlying disease and/or prior corticosteroid treatment to the risk is also not known. If a patient is exposed to chickenpox, prophylaxis with varicella zoster immune globulin (VZIG) may be indicated. If a patient is exposed to measles, prophylaxis with pooled intramuscular immunoglobulin (IG) may be indicated. (See the respective package inserts for complete VZIG and IG prescribing information.) If chickenpox develops, treatment with antiviral agents may be considered.

Because of the potential for worsening infections, inhaled corticosteroids should be used with caution, if at all, in patients with active or quiescent tuberculosis infection of the respiratory tract; untreated systemic fungal, bacterial, viral, or parasitic infections; or ocular herpes simplex.

Transferring Patients From Systemic Corticosteroid Therapy

Particular care is needed for patients who have been transferred from systemically active corticosteroids to inhaled corticosteroids because deaths due to adrenal insufficiency have occurred in patients with asthma during and after transfer from systemic corticosteroids to less systemically available inhaled corticosteroids. After withdrawal from systemic corticosteroids, a number of months are required for recovery of hypothalamic-pituitary-adrenal (HPA) function.

Patients requiring oral corticosteroids should be weaned slowly from systemic corticosteroid use after transferring to FLOVENT HFA. In a clinical trial of 168 patients, prednisone reduction was successfully accomplished by reducing the daily prednisone dose on a weekly basis following initiation of treatment with FLOVENT HFA. Successive reduction of prednisone dose was allowed only when lung function, symptoms, and as-needed short-acting beta-agonist use were better than or comparable to that seen before initiation of prednisone dose reduction. Lung function (forced expiratory volume in 1 second [FEV1] or morning peak expiratory flow [AM PEF]), beta-agonist use, and asthma symptoms should be carefully monitored during withdrawal of oral corticosteroids. In addition to monitoring asthma signs and symptoms, patients should be observed for signs and symptoms of adrenal insufficiency such as fatigue, lassitude, weakness, nausea and vomiting, and hypotension.

Patients who have been previously maintained on 20 mg or more per day of prednisone (or its equivalent) may be most susceptible, particularly when their systemic corticosteroids have been almost completely withdrawn. During this period of HPA suppression, patients may exhibit signs and symptoms of adrenal insufficiency when exposed to trauma, surgery, or infection (particularly gastroenteritis) or other conditions associated with severe electrolyte loss. Although inhaled corticosteroids may provide control of asthma symptoms during these episodes, in recommended doses they supply less than normal physiological amounts of glucocorticoid (cortisol) systemically and do NOT provide the mineralocorticoid activity that is necessary for coping with these emergencies.

During periods of stress or a severe asthma attack, patients who have been withdrawn from systemic corticosteroids should be instructed to resume oral corticosteroids immediately and to contact their physicians for further instruction. These patients should also be instructed to carry a warning card indicating that they may need supplementary systemic corticosteroids during periods of stress or a severe asthma attack.

Transfer of patients from systemic corticosteroid therapy to FLOVENT HFA may unmask conditions previously suppressed by the systemic corticosteroid therapy (e.g., rhinitis, conjunctivitis, eczema, arthritis, eosinophilic conditions). Some patients may experience symptoms of systemically active corticosteroid withdrawal (e.g., joint and/or muscular pain, lassitude, and depression, despite maintenance or even improvement of respiratory function).

Hypercorticism and Adrenal Suppression

Fluticasone propionate will often help control asthma symptoms with less suppression of HPA function than therapeutically equivalent oral doses of prednisone. Since fluticasone propionate is absorbed into the circulation and can be systemically active at higher doses, the beneficial effects of FLOVENT HFA in minimizing HPA dysfunction may be expected only when recommended dosages are not exceeded and individual patients are titrated to the lowest effective dose. A relationship between plasma levels of fluticasone propionate and inhibitory effects on stimulated cortisol production has been shown after 4 weeks of treatment with fluticasone propionate. Since individual sensitivity to effects on cortisol production exists, physicians should consider this information when prescribing FLOVENT HFA.

Because of the possibility of systemic absorption of inhaled corticosteroids, patients treated with FLOVENT HFA should be observed carefully for any evidence of systemic corticosteroid effects. Particular care should be taken in observing patients postoperatively or during periods of stress for evidence of inadequate adrenal response.

It is possible that systemic corticosteroid effects such as hypercorticism and adrenal suppression (including adrenal crisis) may appear in a small number of patients, particularly when FLOVENT HFA is administered at higher than recommended doses over prolonged periods of time. If such effects occur, the dosage of FLOVENT HFA should be reduced slowly, consistent with accepted procedures for reducing systemic corticosteroids and for management of asthma.

Hypersensitivity Reactions, Including Anaphylaxis

Hypersensitivity reactions, including anaphylaxis, angioedema, urticaria, and bronchospasm, may occur after administration of FLOVENT HFA [see CONTRAINDICATIONS].

Reduction in Bone Mineral Density

Decreases in bone mineral density (BMD) have been observed with long-term administration of products containing inhaled corticosteroids. The clinical significance of small changes in BMD with regard to long-term outcomes is unknown. Patients with major risk factors for decreased bone mineral content, such as prolonged immobilization, family history of osteoporosis, postmenopausal status, tobacco use, advanced age, poor nutrition, or chronic use of drugs that can reduce bone mass (e.g., anticonvulsants, oral corticosteroids), should be monitored and treated with established standards of care.

Effect on Growth

Orally inhaled corticosteroids may cause a reduction in growth velocity when administered to pediatric patients [see Use in Specific Populations]. Monitor the growth of pediatric patients receiving FLOVENT HFA routinely (e.g., via stadiometry). To minimize the systemic effects of orally inhaled corticosteroids, including FLOVENT HFA, titrate each patient's dosage to the lowest dosage that effectively controls his/her symptoms [see DOSAGE AND ADMINISTRATION].

Glaucoma and Cataracts

Glaucoma, increased intraocular pressure, and cataracts have been reported in patients following the long-term administration of inhaled corticosteroids, including fluticasone propionate. Therefore, close monitoring is warranted in patients with a change in vision or with a history of increased intraocular pressure, glaucoma, and/or cataracts.

Paradoxical Bronchospasm

As with other inhaled medications, bronchospasm may occur with an immediate increase in wheezing after dosing. If bronchospasm occurs following dosing with FLOVENT HFA, it should be treated immediately with a fast-acting inhaled bronchodilator. Treatment with FLOVENT HFA should be discontinued immediately and alternative therapy instituted.

Drug Interactions With Strong Cytochrome P450 3A4 Inhibitors

The use of strong cytochrome P450 3A4 (CYP3A4) inhibitors (e.g., ritonavir, atazanavir, clarithromycin, indinavir, itraconazole, nefazodone, nelfinavir, saquinavir, ketoconazole, telithromycin) with FLOVENT HFA is not recommended because increased systemic corticosteroid adverse effects may occur [see DRUG INTERACTIONS, CLINICAL PHARMACOLOGY].

Eosinophilic Conditions and Churg-Strauss Syndrome

In rare cases, patients on inhaled fluticasone propionate may present with systemic eosinophilic conditions. Some of these patients have clinical features of vasculitis consistent with Churg-Strauss syndrome, a condition that is often treated with systemic corticosteroid therapy. These events usually, but not always, have been associated with the reduction and/or withdrawal of oral corticosteroid therapy following the introduction of fluticasone propionate. Cases of serious eosinophilic conditions have also been reported with other inhaled corticosteroids in this clinical setting. Physicians should be alert to eosinophilia, vasculitic rash, worsening pulmonary symptoms, cardiac complications, and/or neuropathy presenting in their patients. A causal relationship between fluticasone propionate and these underlying conditions has not been established.

Patient Counseling Information

See FDA-approved patient labeling (Patient Information and Instructions for Use).

Oral Candidiasis

Patients should be advised that localized infections with Candida albicans have occurred in the mouth and pharynx in some patients. If oropharyngeal candidiasis develops, it should be treated with appropriate local or systemic (i.e., oral antifungal) therapy while still continuing therapy with FLOVENT HFA, but at times therapy with FLOVENT HFA may need to be temporarily interrupted under close medical supervision. Rinsing the mouth after inhalation is advised.

Status Asthmaticus and Acute Asthma Symptoms

Patients should be advised that FLOVENT HFA is not a bronchodilator and is not intended for use as rescue medication for acute asthma exacerbations. Acute asthma symptoms should be treated with an inhaled, short-acting beta2-agonist such as albuterol. Patients should be instructed to contact their physicians immediately if there is deterioration of their asthma.

Immunosuppression

Patients who are on immunosuppressant doses of corticosteroids should be warned to avoid exposure to chickenpox or measles and if they are exposed to consult their physicians without delay. Patients should be informed of potential worsening of existing tuberculosis, fungal, bacterial, viral, or parasitic infections, or ocular herpes simplex.

Hypercorticism and Adrenal Suppression

Patients should be advised that FLOVENT HFA may cause systemic corticosteroid effects of hypercorticism and adrenal suppression. Additionally, patients should be instructed that deaths due to adrenal insufficiency have occurred during and after transfer from systemic corticosteroids. Patients should taper slowly from systemic corticosteroids if transferring to FLOVENT HFA.

Hypersensitivity Reactions, Including Anaphylaxis

Patients should be advised that hypersensitivity reactions including anaphylaxis, angioedema, urticaria, and bronchospasm may occur after administration of FLOVENT HFA. Patients should discontinue FLOVENT HFA if such reactions occur.

Reduction in Bone Mineral Density

Patients who are at an increased risk for decreased BMD should be advised that the use of corticosteroids may pose an additional risk.

Reduced Growth Velocity

Patients should be informed that orally inhaled corticosteroids, including FLOVENT HFA, may cause a reduction in growth velocity when administered to pediatric patients. Physicians should closely follow the growth of children and adolescents taking corticosteroids by any route.

Ocular Effects

Long-term use of inhaled corticosteroids may increase the risk of some eye problems (cataracts or glaucoma); regular eye examinations should be considered.

Use Daily for Best Effect

Patients should use FLOVENT HFA at regular intervals as directed. Individual patients will experience a variable time to onset and degree of symptom relief and the full benefit may not be achieved until treatment has been administered for 1 to 2 weeks or longer. Patients should not increase the prescribed dosage but should contact their physicians if symptoms do not improve or if the condition worsens. Patients should be instructed not to stop use of FLOVENT HFA abruptly. Patients should contact their physicians immediately if they discontinue use of FLOVENT HFA.

Nonclinical Toxicology

Carcinogenesis, Mutagenesis, Impairment of Fertility

Fluticasone propionate demonstrated no tumorigenic potential in mice at oral doses up to 1,000 mcg/kg (approximately 2 and 10 times the MRHD in adults and children aged 4 to 11 years, respectively, on a mg/m basis) for 78 weeks or in rats at inhalation doses up to 57 mcg/kg (approximately 0.3 times and approximately equivalent to the MRHD in adults and children aged 4 to 11 years, respectively, on a mg/m basis) for 104 weeks.

Fluticasone propionate did not induce gene mutation in prokaryotic or eukaryotic cells in vitro. No significant clastogenic effect was seen in cultured human peripheral lymphocytes in vitro or in the in vivo mouse micronucleus test.

No evidence of impairment of fertility was observed in reproductive studies conducted in male and female rats at subcutaneous doses up to 50 mcg/kg (approximately 0.2 times the MRHD in adults on a mg/m² basis). Prostate weight was significantly reduced at a subcutaneous dose of 50 mcg/kg.

Use In Specific Populations

Pregnancy

Pregnancy Category C

There are no adequate and well-controlled studies with FLOVENT HFA in pregnant women. FLOVENT HFA should be used during pregnancy only if the potential benefit justifies the potential risk to the fetus.

Teratogenic Effects

Subcutaneous studies in mice at a dose approximately 0.1 times the maximum recommended human daily inhalation dose (MRHD) in adults on a mg/m basis and in the rat at a dose approximately 0.5 times the MRHD in adults on a mg/m² basis revealed fetal toxicity characteristic of potent corticosteroid compounds, including embryonic growth retardation, omphalocele, cleft palate, and retarded cranial ossification.

In rabbits, fetal weight reduction and cleft palate were observed at a subcutaneous dose approximately 0.04 times the MRHD in adults on a mg/m basis. However, no teratogenic effects were reported at oral doses up to approximately 3 times the MRHD in adults on a mg/m basis. No fluticasone propionate was detected in the plasma in this study, consistent with the established low bioavailability following oral administration [see CLINICAL PHARMACOLOGY].

Experience with oral corticosteroids since their introduction in pharmacologic, as opposed to physiologic, doses suggests that rodents are more prone to teratogenic effects from corticosteroids than humans. In addition, because there is a natural increase in corticosteroid production during pregnancy, most women will require a lower exogenous corticosteroid dose and many will not need corticosteroid treatment during pregnancy.

Nursing Mothers

It is not known whether fluticasone propionate is excreted in human breast milk. However, other corticosteroids have been detected in human milk. Subcutaneous administration to lactating rats of tritiated fluticasone propionate (approximately 0.05 times the MRHD in adults on a mg/m basis) resulted in measurable radioactivity in milk.

Since there are no data from controlled trials on the use of FLOVENT HFA by nursing mothers, caution should be exercised when FLOVENT HFA is administered to a nursing woman.

Pediatric Use

The safety and effectiveness of FLOVENT HFA in children 4 years and older have been established [see ADVERSE REACTIONS, CLINICAL PHARMACOLOGY, Clinical Studies]. The safety and effectiveness of FLOVENT HFA in children younger than 4 years have not been established. Use of FLOVENT HFA in patients aged 4 to 11 years is supported by evidence from adequate and well-controlled studies in adults and adolescents 12 years and older, pharmacokinetic studies in patients aged 4 to 11 years, established efficacy of fluticasone propionate formulated as FLOVENT® DISKUS® (fluticasone propionate inhalation powder) and FLOVENT® ROTADISK® (fluticasone propionate inhalation powder) in patients aged 4 to 11 years, and supportive findings with FLOVENT HFA in a study conducted in patients aged 4 to 11 years.

Effects on Growth

Orally inhaled corticosteroids may cause a reduction in growth velocity when administered to pediatric patients. A reduction of growth velocity in children or teenagers may occur as a result of poorly controlled asthma or from use of corticosteroids including inhaled corticosteroids. The effects of long-term treatment of children and adolescents with inhaled corticosteroids, including fluticasone propionate, on final adult height are not known.

Controlled clinical studies have shown that inhaled corticosteroids may cause a reduction in growth in pediatric patients. In these studies, the mean reduction in growth velocity was approximately 1 cm/year (range: 0.3 to 1.8 cm/year) and appears to depend upon dose and duration of exposure. This effect was observed in the absence of laboratory evidence of HPA axis suppression, suggesting that growth velocity is a more sensitive indicator of systemic corticosteroid exposure in pediatric patients than some commonly used tests of HPA axis function. The long-term effects of this reduction in growth velocity associated with orally inhaled corticosteroids, including the impact on final adult height, are unknown. The potential for “catch-up” growth following discontinuation of treatment with orally inhaled corticosteroids has not been adequately studied. The effects on growth velocity of treatment with orally inhaled corticosteroids for over 1 year, including the impact on final adult height, are unknown. The growth of children and adolescents receiving orally inhaled corticosteroids, including FLOVENT HFA, should be monitored routinely (e.g., via stadiometry). The potential growth effects of prolonged treatment should be weighed against the clinical benefits obtained and the risks associated with alternative therapies. To minimize the systemic effects of orally inhaled corticosteroids, including FLOVENT HFA, each patient should be titrated to the lowest dose that effectively controls his/her symptoms.

Since a cross study comparison in adolescent and adult patients (aged 12 years and older) indicated that systemic exposure of inhaled fluticasone propionate from FLOVENT HFA would be higher than exposure from FLOVENT ROTADISK, results from a study to assess the potential growth effects of FLOVENT ROTADISK in pediatric patients (aged 4 to 11 years) are provided.

A 52-week placebo-controlled study to assess the potential growth effects of fluticasone propionate inhalation powder (FLOVENT ROTADISK) at 50 and 100 mcg twice daily was conducted in the US in 325 prepubescent children (244 males and 81 females) aged 4 to 11 years. The mean growth velocities at 52 weeks observed in the intent-to-treat population were 6.32 cm/year in the placebo group (n = 76), 6.07 cm/year in the 50-mcg group (n = 98), and 5.66 cm/year in the 100-mcg group (n = 89). An imbalance in the proportion of children entering puberty between groups and a higher dropout rate in the placebo group due to poorly controlled asthma may be confounding factors in interpreting these data. A separate subset analysis of children who remained prepubertal during the study revealed growth rates at 52 weeks of 6.10 cm/year in the placebo group (n = 57), 5.91 cm/year in the 50-mcg group (n = 74), and 5.67 cm/year in the 100-mcg group (n = 79). In children aged 8.5 years, the mean age of children in this study, the range for expected growth velocity is: boys - 3rd percentile = 3.8 cm/year, 50th percentile = 5.4 cm/year, and 97th percentile = 7.0 cm/year; girls - 3rd percentile = 4.2 cm/year, 50th percentile = 5.7 cm/year, and 97th percentile = 7.3 cm/year.

The clinical significance of these growth data is not certain. Physicians should closely follow the growth of children and adolescents taking corticosteroids by any route, and weigh the benefits of corticosteroid therapy against the possibility of growth suppression if growth appears slowed. Patients should be maintained on the lowest dose of inhaled corticosteroid that effectively controls their asthma.

Children Younger Than 4 Years

Pharmacokinetics: [see CLINICAL PHARMACOLOGY].

Pharmacodynamics: A 12-week, double-blind, placebo-controlled, parallel-group study was conducted in children with asthma aged 1 to less than 4 years. Twelve-hour overnight urinary cortisol excretion after a 12-week treatment period with 88 mcg of FLOVENT HFA twice daily (n = 73) and with placebo (n = 42) were calculated. The mean and median change from baseline in urine cortisol over 12 hours were -0.7 and 0.0 mcg for FLOVENT HFA and 0.3 and -0.2 mcg for placebo, respectively.

In a 1-way crossover study in children aged 6 to less than 12 months with reactive airways disease (N = 21), serum cortisol was measured over a 12-hour dosing period. Patients received placebo treatment for a 2-week period followed by a 4-week treatment period with 88 mcg of FLOVENT HFA twice daily with an AeroChamber Plus® Valved Holding Chamber (VHC) with face mask. The geometric mean ratio of serum cortisol over 12 hours (AUC0-12 hr) following FLOVENT HFA (n = 16) versus placebo (n = 18) was 0.95 (95% CI: 0.72, 1.27).

Safety: FLOVENT HFA administered as 88 mcg twice daily has been evaluated for safety in 239 pediatric patients aged 1 to less than 4 years in a 12-week, double-blind, placebocontrolled study. Treatments were administered with an AeroChamber Plus VHC with face mask. In pediatric patients aged 1 to less than 4 years receiving FLOVENT HFA, the following events occurred with a frequency greater than 3% and more frequently than in pediatric patients who received placebo, regardless of causality assessment: pyrexia, nasopharyngitis, upper respiratory tract infection, vomiting, otitis media, diarrhea, bronchitis, pharyngitis, and viral infection.

FLOVENT HFA administered as 88 mcg twice daily has also been evaluated for safety in 23 pediatric patients aged 6 to 12 months in an open-label placebo-controlled study. Treatments were administered with an AeroChamber Plus VHC with face mask for 2 weeks with placebo followed by 4 weeks with active drug. There was no discernable difference in the types of adverse events reported between patients receiving placebo compared to the active drug.

In Vitro Testing of Dose Delivery With Holding Chambers: In vitro dose characterization studies were performed to evaluate the delivery of FLOVENT HFA via holding chambers with attached face masks. The studies were conducted with 2 different holding chambers (AeroChamber Plus VHC and AeroChamber Z-STAT Plus™ VHC) and face masks (small and medium size) at inspiratory flow rates of 4.9, 8.0, and 12.0 L/min in combination with holding times of 0, 2, 5, and 10 seconds. The flow rates were selected to be representative of inspiratory flow rates of children aged 6 to 12 months, 2 to 5 years, and over 5 years, respectively. The mean delivered dose of fluticasone propionate through the holding chambers with face masks was lower than the 44 mcg of fluticasone propionate delivered directly from the actuator mouthpiece. The results were similar through both holding chambers (see Table 3 for data for the AeroChamber Plus VHC). The fine particle fraction (approximately 1 to 5 Ám) across the flow rates used in these studies was 70% to 84% of the delivered dose, consistent with the removal of the coarser fraction by the holding chamber. In contrast, the fine particle fraction for FLOVENT HFA delivered without a holding chamber typically represents 42% to 55% of the delivered dose measured at the standard flow rate of 28.3 L/min. These data suggest that, on a per kilogram basis, young children receive a comparable dose of fluticasone propionate when delivered via a holding chamber and face mask as adults do without their use.

Table 3: In Vitro Medication Delivery Through AeroChamber Plus Valved Holding Chamber With a Face Mask

Age Face Mask Flow Rate (L/min) Holding Time (seconds) Mean Medication Delivery Through AeroChamber Plus VHC (mcg/actuation) Body Weight 50th Percentile (kg)a Medication Delivered per Actuation (mcg/kg)b
6 to 12 Months Small 4.9 0 8.3 7.5-9.9 0.8-1.1
2 6.7 0.7-0.9
5 7.5 0.8-1.0
10 7.5 0.8-1.0
2 to 5 Years Small 8.0 0 7.3 12.3-18.0 0.4-0.6
2 6.8 0.4-0.6
5 6.7 0.4-0.5
10 7.7 0.4-0.6
2 to 5 Years Medium 8.0 0 7.8 12.3-18.0 0.4-0.6
2 7.7 0.4-0.6
5 8.1 0.5-0.7
10 9.0 0.5-0.7
> 5 Years Medium 12.0 0 12.3 18.0 0.7
2 11.8 0.7
5 12.0 0.7
10 10.1 0.6
a Centers for Disease Control growth charts, developed by the National Center for Health Statistics in collaboration with the National Center for Chronic Disease Prevention and Health Promotion (2000). Ranges correspond to the average of the 50th percentile weight for boys and girls at the ages indicated.
b A single inhalation of FLOVENT HFA in a 70-kg adult without use of a valved holding chamber and face mask delivers approximately 44 mcg, or 0.6 mcg/kg.

Geriatric Use

Of the total number of patients treated with FLOVENT HFA in US and non-US clinical trials, 173 were 65 years or older, 19 of which were 75 years or older. No overall differences in safety or effectiveness were observed between these patients and younger patients, and other reported clinical experience has not identified differences in responses between the elderly and younger patients, but greater sensitivity of some older individuals cannot be ruled out.

Hepatic Impairment

Formal pharmacokinetic studies using FLOVENT HFA have not been conducted in patients with hepatic impairment. Since fluticasone propionate is predominantly cleared by hepatic metabolism, impairment of liver function may lead to accumulation of fluticasone propionate in plasma. Therefore, patients with hepatic disease should be closely monitored.

Renal Impairment

Formal pharmacokinetic studies using FLOVENT HFA have not been conducted in patients with renal impairment.

Last reviewed on RxList: 8/23/2013
This monograph has been modified to include the generic and brand name in many instances.

Warnings
Precautions
A A A

Flovent HFA - User Reviews

Flovent HFA User Reviews

Now you can gain knowledge and insight about a drug treatment with Patient Discussions.

Here is a collection of user reviews for the medication Flovent HFA sorted by most helpful. Patient Discussions FAQs

Report Problems to the Food and Drug Administration

 

You are encouraged to report negative side effects of prescription drugs to the FDA. Visit the FDA MedWatch website or call 1-800-FDA-1088.


Allergies & Asthma

Improve treatments & prevent attacks.


NIH talks about Ebola on WebMD