Recommended Topic Related To:

Jevtana

"The U.S. Food and Drug Administration today approved Xofigo (radium Ra 223 dichloride) to treat men with symptomatic late-stage (metastatic) castration-resistant prostate cancer that has spread to bones but not to other organs. It is intended for"...

Jevtana

Jevtana

CLINICAL PHARMACOLOGY

Mechanism of Action

Cabazitaxel is a microtubule inhibitor. Cabazitaxel binds to tubulin and promotes its assembly into microtubules while simultaneously inhibiting disassembly. This leads to the stabilization of microtubules, which results in the inhibition of mitotic and interphase cellular functions.

Pharmacodynamics

Cabazitaxel demonstrated antitumor activity against advanced human tumors xenografted in mice. Cabazitaxel is active in docetaxel-sensitive tumors. In addition, cabazitaxel demonstrated activity in tumor models insensitive to chemotherapy including docetaxel.

Pharmacokinetics

A population pharmacokinetic analysis was conducted in 170 patients with solid tumors at doses ranging from 10 to 30 mg/m² weekly or every three weeks.

Absorption

Based on the population pharmacokinetic analysis, after an intravenous dose of cabazitaxel 25 mg/m2 every three weeks, the mean Cmax in patients with metastatic prostate cancer was 226 ng/mL (CV 107%) and was reached at the end of the one-hour infusion (Tmax). The mean AUC in patients with metastatic prostate cancer was 991 ng•h/mL (CV 34%).

No major deviation from the dose proportionality was observed from 10 to 30 mg/mē in patients with advanced solid tumors.

Distribution

The volume of distribution (Vss) was 4,864 L (2,643 L/mē for a patient with a median BSA of 1.84 mē) at steady state.

In vitro, the binding of cabazitaxel to human serum proteins was 89 to 92% and was not saturable up to 50,000 ng/mL, which covers the maximum concentration observed in clinical trials. Cabazitaxel is mainly bound to human serum albumin (82%) and lipoproteins (88% for HDL, 70% for LDL, and 56% for VLDL). The in vitro blood-to-plasma concentration ratio in human blood ranged from 0.90 to 0.99, indicating that cabazitaxel was equally distributed between blood and plasma.

Metabolism

Cabazitaxel is extensively metabolized in the liver ( > 95%), mainly by the CYP3A4/5 isoenzyme (80% to 90%), and to a lesser extent by CYP2C8. Cabazitaxel is the main circulating moiety in human plasma. Seven metabolites were detected in plasma (including the 3 active metabolites issued from O-demethylation), with the main one accounting for 5% of cabazitaxel exposure. Around 20 metabolites of cabazitaxel are excreted into human urine and feces.

Based on in vitro studies, the potential for cabazitaxel to inhibit drugs that are substrates of other CYP isoenzymes (1A2,-2B6,-2C9, -2C8, -2C19, -2E1, -2D6, and CYP3A4/5) is low. In addition, cabazitaxel did not induce CYP isozymes (-1A, -2C and -3A) in vitro.

Elimination

After a one-hour intravenous infusion [14C]-cabazitaxel 25 mg/m², approximately 80% of the administered dose was eliminated within 2 weeks. Cabazitaxel is mainly excreted in the feces as numerous metabolites (76% of the dose); while renal excretion of cabazitaxel and metabolites account for 3.7% of the dose (2.3% as unchanged drug in urine).

Based on the population pharmacokinetic analysis, cabazitaxel has a plasma clearance of 48.5 L/h (CV 39%; 26.4 L/h/mē for a patient with a median BSA of 1.84 mē) in patients with metastatic prostate cancer. Following a one-hour intravenous infusion, plasma concentrations of cabazitaxel can be described by a three-compartment pharmacokinetic model with α-, β-, and γ-half-lives of 4 minutes, 2 hours, and 95 hours, respectively.

Renal Impairment

Cabazitaxel is minimally excreted via the kidney. No formal pharmacokinetic trials have been conducted with cabazitaxel in patients with renal impairment. The population pharmacokinetic analysis carried out in 170 patients including 14 patients with moderate renal impairment (30 mL/min ≤ CLcr < 50 mL/min) and 59 patients with mild renal impairment (50 mL/min ≤ CLcr < 80 mL/min) showed that mild to moderate renal impairment did not have meaningful effects on the pharmacokinetics of cabazitaxel. No data are available for patients with severe renal impairment or end-stage renal disease [see Use in Special Populations].

Hepatic Impairment

No formal trials in patients with hepatic impairment have been conducted. As cabazitaxel is extensively metabolized in the liver, hepatic impairment is likely to increase the cabazitaxel concentrations [see WARNINGS AND PRECAUTIONS, and Use in Special Populations].

Drug interactions

As cabazitaxel is mainly metabolized by CYP3A in vitro, strong CYP3A inducers or inhibitors are expected to affect the pharmacokinetics of cabazitaxel.

Prednisone or prednisolone administered at 10 mg daily did not affect the pharmacokinetics of cabazitaxel.

In vitro, cabazitaxel did not inhibit the multidrug-resistance protein 1 (MRP1), 2 (MRP2) or organic cation transporter (OCT1). In vitro, cabazitaxel inhibited P-gp, BRCP, and organic anion transporting polypeptides (OATP1B1, OATP1B3). However the in vivo risk of cabazitaxel inhibiting MRPs, OCT1, P-gp, BCRP, OATP1B1 or OATP1B3 is low at the dose of 25 mg/m².

In vitro, cabazitaxel is a substrate of P-gp, but not a substrate of MRP1, MRP2, BCRP, OCT1, OATP1B1 or OATP1B3.

Cardiac Electrophysiology

The effect of cabazitaxel following a single dose of 25 mg/m2 administered by intravenous infusion on QTc interval was evaluated in 94 patients with solid tumors. No large changes in the mean QT interval (i.e., > 20 ms) from baseline based on Fridericia correction method were detected. However, a small increase in the mean QTc interval (i.e., < 10 ms) cannot be excluded due to study design limitations.

Clinical Studies

The efficacy and safety of JEVTANA in combination with prednisone were evaluated in a randomized, open-label, international, multi-center study in patients with hormone-refractory metastatic prostate cancer previously treated with a docetaxel-containing treatment regimen.

A total of 755 patients were randomized to receive either JEVTANA 25 mg/m² intravenously every 3 weeks for a maximum of 10 cycles with prednisone 10 mg orally daily (n=378), or to receive mitoxantrone 12 mg/m² intravenously every 3 weeks for 10 cycles with prednisone 10 mg orally daily (n=377) for a maximum of 10 cycles.

This study included patients over 18 years of age with hormone-refractory metastatic prostate cancer either measurable by RECIST criteria or non-measurable disease with rising PSA levels or appearance of new lesions, and ECOG (Eastern Cooperative Oncology Group) performance status 0-2. Patients had to have neutrophils > 1,500 cells/mm³, platelets > 100,000 cells/mm³, hemoglobin > 10 g/dL, creatinine < 1.5 x upper limit of normal (ULN), total bilirubin < 1xULN, AST < 1.5 x ULN, and ALT < 1.5 x ULN. Patients with a history of congestive heart failure, or myocardial infarction within the last 6 months, or patients with uncontrolled cardiac arrhythmias, angina pectoris, and/or hypertension were not included in the study.

Demographics, including age, race, and ECOG performance status (0-2) were balanced between the treatment arms. The median age was 68 years (range 46-92) and the racial distribution for all groups was 83.9% Caucasian, 6.9% Asian, 5.3% Black, and 4% Others in the JEVTANA group.

Efficacy results for the JEVTANA arm versus the control arm are summarized in Table 3 and Figure 1.

Table 3 : Efficacy of JEVTANA in the Treatment of Patients with Hormone Refractory Metastatic Prostate Cancer (Intent-to-Treat Analysis)

  JEVTANA + Prednisone
n=378
Mitoxantrone + Prednisone
n=377
Overall Survival
Number of deaths (%) 234 (61.9 %) 279 (74%)
Median survival (month) (95% CI) 15.1 (14.1-16.3) 12.7 (11.6-13.7)
Hazard Ratio1 (95% CI) 0.70 (0.59-0.83)
p-value < 0.0001
1Hazard ratio estimated using Cox model; a hazard ratio of less than 1 favors JEVTANA

Kaplan-Meier Overall Survival Curves - Illustration

Investigator-assessed tumor response of 14.4% (95%CI: 9.6-19.3) was higher for patients in the JEVTANA arm compared to 4.4% (95%CI: 1.6-7.2) for patients in the mitoxantrone arm, p=0.0005.

Last reviewed on RxList: 10/16/2012
This monograph has been modified to include the generic and brand name in many instances.

A A A

Jevtana - User Reviews

Jevtana User Reviews

Now you can gain knowledge and insight about a drug treatment with Patient Discussions.

Here is a collection of user reviews for the medication Jevtana sorted by most helpful. Patient Discussions FAQs

Report Problems to the Food and Drug Administration

 

You are encouraged to report negative side effects of prescription drugs to the FDA. Visit the FDA MedWatch website or call 1-800-FDA-1088.


Cancer

Get the latest treatment options.

advertisement
advertisement
Use Pill Finder Find it Now See Interactions

Pill Identifier on RxList

  • quick, easy,
    pill identification

Find a Local Pharmacy

  • including 24 hour, pharmacies

Interaction Checker

  • Check potential drug interactions
Search the Medical Dictionary for Health Definitions & Medical Abbreviations