Recommended Topic Related To:

Lopressor HCT

"What are calcium channel blockers (CCBs) and how do they work?

Calcium channel blockers are drugs that block the entry of calcium into the muscle cells of the heart and arteries.

  • The entry of calcium is critical for"...

Lopressor HCT

CLINICAL PHARMACOLOGY

Lopressor

Lopressor is a beta-adrenergic receptor blocking agent. In vitro and in vivo animal studies have shown that it has a preferential effect on beta1 adrenoreceptors, chiefly located in cardiac muscle. This preferential effect is not absolute, however, and at higher doses, Lopressor also inhibits beta2 adrenoreceptors, chiefly located in the bronchial and vascular musculature.

Clinical pharmacology studies have confirmed the beta-blocking activity of metoprolol in man, as shown by (1) reduction in heart rate and cardiac output at rest and upon exercise, (2) reduction of systolic blood pressure upon exercise, (3) inhibition of isoproterenol-induced tachycardia, and (4) reduction of reflex orthostatic tachycardia.

Relative beta1 selectivity has been confirmed by the following: (1) In normal subjects, Lopressor is unable to reverse the beta2-mediated vasodilating effects of epinephrine. This contrasts with the effect of nonselective (betai plus beta2) beta blockers, which completely reverse the vasodilating effects of epinephrine. (2) In asthmatic patients, Lopressor reduces FEV1 and FVC significantly less than a nonselective beta blocker, propranolol at equivalent beta1-receptor blocking doses.

Lopressor has no intrinsic sympathomimetic activity and only weak membrane-stabilizing activity. Lopressor crosses the blood-brain barrier and has been reported in the CSF in a concentration 78% of the simultaneous plasma concentration. Animal and human experiments indicate that Lopressor slows the sinus rate and decreases AV nodal conduction.

In controlled clinical studies, Lopressor has been shown to be an effective antihypertensive agent when used alone or as concomitant therapy with thiazide-type diuretics, at dosages of 100450 mg daily. In controlled, comparative, clinical studies, Lopressor has been shown to be as effective an antihypertensive agent as propranolol, methyldopa, and thiazide-type diuretics, and to be equally effective in supine and standing positions.

The mechanism of the antihypertensive effects of beta-blocking agents has not been elucidated. However, several possible mechanisms have been proposed: (1) competitive antagonism of catecholamines at peripheral (especially cardiac) adrenergic neuron sites, leading to decreased cardiac output; (2) a central effect leading to reduced sympathetic outflow to the periphery; and (3) suppression of renin activity.

Pharmacokinetics

In man, absorption of Lopressor is rapid and complete. Plasma levels following oral administration, however, approximate 50% of levels following intravenous administration, indicating about 50% first-pass metabolism.

Plasma levels achieved are highly variable after oral administration. Only a small fraction of the drug (about 12%) is bound to human serum albumin. Metoprolol is a racemic mixture of R- and S-enantiomers. Less than 5% of an oral dose of Lopressor is recovered unchanged in the urine; the rest is excreted by the kidneys as metabolites that appear to have no clinical significance. The systemic availability and half-life of Lopressor in patients with renal failure do not differ to a clinically significant degree from those in normal subjects. Consequently, no reduction in dosage is usually needed in patients with chronic renal failure.

In elderly subjects with clinically normal renal function, there are no significant differences in Lopressor pharmacokinetics compared to young subjects.

Lopressor is extensively metabolized by the cytochrome P450 enzyme system in the liver. The oxidative metabolism of Lopressor is under genetic control with a major contribution of the polymorphic cytochrome P450 isoform 2D6 (CYP2D6). There are marked ethnic differences in the prevalence of the poor metabolizers (PM) phenotype. Approximately 7% of Caucasians and less than 1% Asian are poor metabolizers.

Poor CYP2D6 metabolizers exhibit several-fold higher plasma concentrations of Lopressor than extensive metabolizers with normal CYP2D6 activity. The elimination half-life of metoprolol is about 7.5 hours in poor metabolizers and 2.8 hours in extensive metabolizers. However, the CYP2D6 dependent metabolism of Lopressor seems to have little or no effect on safety or tolerability of the drug. None of the metabolites of Lopressor contribute significantly to its beta-blocking effect.

Pharmacodynamics

Significant beta-blocking effect (as measured by reduction of exercise heart rate) occurs within 1 hour after oral administration, and its duration is dose-related. For example, a 50% reduction of the maximum registered effect after single oral doses of 20, 50, and 100 mg occurred at 3.3, 5.0, and 6.4 hours, respectively, in normal subjects. After repeated oral dosages of 100 mg twice daily, a significant reduction in exercise systolic blood pressure was evident at 12 hours.

There is a linear relationship between the log of plasma levels and reduction of exercise heart rate. However, antihypertensive activity does not appear to be related to plasma levels. Because of variable plasma levels attained with a given dose and lack of a consistent relationship of antihypertensive activity to dose, selection of proper dosage requires individual titration.

Hydrochlorothiazide

Thiazides affect the renal tubular mechanism of electrolyte reabsorption. At maximal therapeutic dosage, all thiazides are approximately equal in their diuretic potency. Thiazides increase excretion of sodium and chloride in approximately equivalent amounts. Natriuresis causes a secondary loss of potassium.

The mechanism of the antihypertensive effect of thiazides is unknown. Thiazides do not affect normal blood pressure.

Pharmacokinetics

Hydrochlorothiazide is rapidly absorbed, as indicated by peak plasma concentrations 1-2.5 hours after oral administration. Plasma levels of the drug are proportional to dose; the concentration in whole blood is 1.6-1.8 times higher than in plasma. Thiazides are eliminated rapidly by the kidney. After oral administration of 25- to 100-mg doses, 72-97% of the dose is excreted in the urine, indicating dose-independent absorption. Hydrochlorothiazide is eliminated from plasma in a biphasic fashion with a terminal half-life of 10-17 hours. Plasma protein binding is 67.9%. Plasma clearance is 15.9-30.0 L/hr; volume of distribution is 3.6-7.8 L/kg.

Gastrointestinal absorption of hydrochlorothiazide is enhanced when administered with food. Absorption is decreased in patients with congestive heart failure, and the pharmacokinetics are considerably different in these patients.

Pharmacodynamics

The onset of action of thiazides occurs in 2 hours and the peak effect at about 4 hours. The action persists for approximately 6-12 hours.

Last reviewed on RxList: 5/9/2011
This monograph has been modified to include the generic and brand name in many instances.

A A A

Lopressor HCT - User Reviews

Lopressor HCT User Reviews

Now you can gain knowledge and insight about a drug treatment with Patient Discussions.

Here is a collection of user reviews for the medication Lopressor HCT sorted by most helpful. Patient Discussions FAQs

Report Problems to the Food and Drug Administration

 

You are encouraged to report negative side effects of prescription drugs to the FDA. Visit the FDA MedWatch website or call 1-800-FDA-1088.


Hypertension

Get tips on handling your hypertension.