Recommended Topic Related To:

Macugen

"In a traditional corneal transplant, the central part of the cornea is removed and a donor cornea is sutured in its place. Image courtesy of Dr. Edward Holland, University of Cincinnati.

Ten years after a transplant, a cornea fro"...

Macugen

Macugen

CLINICAL PHARMACOLOGY

Mechanism of Action

Pegaptanib is a selective vascular endothelial growth factor (VEGF) antagonist. VEGF is a secreted protein that selectively binds and activates its receptors located primarily on the surface of vascular endothelial cells. VEGF induces angiogenesis, and increases vascular permeability and inflammation, all of which are thought to contribute to the progression of the neovascular (wet) form of age-related macular degeneration (AMD), a leading cause of blindness. VEGF has been implicated in blood retinal barrier breakdown and pathological ocular neovascularization.

Pegaptanib is an aptamer, a pegylated modified oligonucleotide, which adopts a three-dimensional conformation that enables it to bind to extracellular VEGF. Under in vitro testing conditions, pegaptanib binds to the major pathological VEGF isoform, extracellular VEGF165, thereby inhibiting VEGF165 binding to its VEGF receptors. The inhibition of VEGF164, the rodent counterpart of human VEGF165, was effective at suppressing pathological neovascularization.

Pharmacokinetics

Absorption

In animals, pegaptanib is slowly absorbed into the systemic circulation from the eye after intravitreous administration. The rate of absorption from the eye is the rate limiting step in the disposition of pegaptanib in animals and is likely to be the rate limiting step in humans.

In humans, a mean maximum plasma concentration of about 80 ng/mL occurs within 1 to 4 days after a 3 mg monocular dose (10 times the recommended dose). The mean area under the plasma concentration-time curve (AUC) is about 25 μg·hr/mL at this dose.

Pegaptanib is metabolized by nucleases and is generally not affected by the cytochrome P450 system.

Two early clinical studies conducted in patients who received Macugen alone and in combination with photodynamic therapy (PDT) revealed no apparent difference in the plasma pharmacokinetics of pegaptanib.

Distribution/Metabolism/Excretion

Twenty-four hours after intravitreous administration of a radiolabeled dose of pegaptanib to both eyes of rabbits, radioactivity was mainly distributed in vitreous fluid, retina, and aqueous fluid. After intravitreous and intravenous administrations of radiolabeled pegaptanib to rabbits, the highest concentrations of radioactivity (excluding the eye for the intravitreous dose) were obtained in the kidney. In rabbits, the component nucleotide, 2'fluorouridine is found in plasma and urine after single radiolabeled pegaptanib intravenous and intravitreous doses. In rabbits, pegaptanib is eliminated as parent drug and metabolites primarily in the urine.

Based on preclinical data, pegaptanib is metabolized by endo- and exonucleases.

In humans, after a 3 mg monocular dose (10 times the recommended dose), the average (± standard deviation) apparent plasma half-life of pegaptanib is 10 (±4) days.

Special Populations

Plasma concentrations do not appear to be affected by age or gender, but have not been studied in patients under the age of 50.

Clinical Studies

Macugen was studied in two controlled, double-masked, and identically designed randomized studies in patients with neovascular AMD. Patients were randomized to receive control (sham treatment) or 0.3 mg, 1 mg or 3 mg Macugen administered as intravitreous injections every 6 weeks for 48 weeks. A total of approximately 1200 patients were enrolled with 892 patients receiving Macugen and 298 receiving a sham injection. The median age of the patients was 77 years. Patients received a mean 8.5 treatments out of a possible 9 total treatments across all treatment arms. Patients were re-randomized between treatment and no treatment during the second year. Patients who continued treatment in year 2 received a mean of 16 treatments out of a possible total 17 overall.

The two trials enrolled patients with neovascular AMD characteristics including classic, occult, and mixed lesions of up to 12 disc areas and baseline visual acuity in the study eye between 20/40 and 20/320. The primary efficacy endpoint was the proportion of patients losing less than 15 letters of visual acuity, from baseline up to 54 week assessment.

Verteporfin PDT usage was permitted at the discretion of the investigators in patients with predominantly classic lesions.

The groups treated with Macugen 0.3 mg exhibited a statistically significant result in both trials for the primary efficacy endpoint at 1 year: Study EOP1003, Macugen 73% vs. Sham 60%; Study EOP1004, Macugen 67% vs. Sham 53%. Concomitant use of PDT overall was low. More sham treated patients (75/296) received PDT than Macugen 0.3 mg treated patients (58/294).

On average, Macugen 0.3 mg treated patients and sham treated patients continued to experience vision loss. However, the rate of vision decline in the Macugen treated group was slower than the rate in the patients who received sham treatment. See Figure 1.

Figure 1 : Mean Visual Acuity: Year 1

Mean Visual Acuity: Year 1 - Illustration

At the end of the first year (week 54), approximately 1050 of the original 1200 patients were re-randomized to either continue the same treatment or to discontinue treatment through week 102. See Figure 2.

Macugen was less effective during the second year than during the first year. The percentage of patients losing less than 15 letters from baseline to week 102 was: Study EOP1003, Macugen 38/67 (57%); Sham 30/54 (56%); Study EOP1004, Macugen 40/66 (61%); Sham 18/53 (34%).

Figure 2 : Mean Visual Acuity: Year 2

Mean Visual Acuity: Year 2 - Illustration

Dose levels above 0.3 mg did not demonstrate any additional benefit. The safety or efficacy of Macugen beyond 2 years has not been demonstrated.

Last reviewed on RxList: 10/28/2011
This monograph has been modified to include the generic and brand name in many instances.

A A A

Report Problems to the Food and Drug Administration

 

You are encouraged to report negative side effects of prescription drugs to the FDA. Visit the FDA MedWatch website or call 1-800-FDA-1088.


WebMD Daily

Get breaking medical news.

Related Drugs
advertisement
advertisement
Use Pill Finder Find it Now See Interactions

Pill Identifier on RxList

  • quick, easy,
    pill identification

Find a Local Pharmacy

  • including 24 hour, pharmacies

Interaction Checker

  • Check potential drug interactions
Search the Medical Dictionary for Health Definitions & Medical Abbreviations