April 28, 2017
Recommended Topic Related To:

Methadose Oral Concentrate

"The U.S. Food and Drug Administration today approved a prescription treatment that can be used by family members or caregivers to treat a person known or suspected to have had an opioid overdose. Evzio (naloxone hydrochloride injection) rapidly d"...


Methadose Oral Concentrate



Methadose and Methadose Sugar-Free are for oral administration only. The preparation must not be injected. Methadose and Methadose Sugar-Free, if dispensed, should be packaged in child-resistant containers and kept out of reach of children to prevent accidental ingestion.

Respiratory Depression

Respiratory depression is the chief hazard associated with methadone hydrochloride administration. Methadone's peak respiratory depressant effects typically occur later, and persist longer than its peak analgesic effects, in the short-term use setting. These characteristics can contribute to cases of iatrogenic overdose, particularly during treatment initiation and dose titration.

Respiratory depression is of particular concern in elderly or debilitated patients as well as in those suffering from conditions accompanied by hypoxia or hypercapnia when even moderate therapeutic doses may dangerously decrease pulmonary ventilation.

Methadone should be administered with extreme caution to patients with conditions accompanied by hypoxia, hypercapnia, or decreased respiratory reserve such as: asthma, chronic obstructive pulmonary disease or cor pulmonale, severe obesity, sleep apnea syndrome, myxedema, kyphoscoliosis, and central nervous system (CNS) depression or coma. In these patients, even usual therapeutic doses of methadone may decrease respiratory drive while simultaneously increasing airway resistance to the point of apnea. Methadone should be used at the lowest effective dose and only under careful medical supervision.

Cardiac Conduction Effects

This information is intended to alert the prescriber to comprehensively evaluate the risks and benefits of methadone treatment. The intent is not to deter the appropriate use of methadone in patients with a history of cardiac disease.

Laboratory studies, both in vivo and in vitro, have demonstrated that methadone inhibits cardiac potassium channels and prolongs the QT interval. Cases of QT interval prolongation and serious arrhythmia (torsades de pointes) have been observed during treatment with methadone. These cases appear to be more commonly associated with, but not limited to, higher dose treatment ( > 200 mg/day). Although most cases involve patients being treated for pain with large, multiple daily doses of methadone, cases have been reported in patients receiving doses commonly used for maintenance treatment of opioid addiction. In most of the cases seen at typical maintenance doses, concomitant medications and/or clinical conditions such as hypokalemia were noted as contributing factors. However, the evidence strongly suggests that methadone possesses the potential for adverse cardiac conduction effects in some patients.

Methadone should be administered with particular caution to patients already at risk for development of prolonged QT interval (e.g., cardiac hypertrophy, concomitant diuretic use, hypokalemia, hypomagnesemia). Careful monitoring is recommended when using methadone in patients with a history of cardiac conduction abnormalities, those taking medications affecting cardiac conduction, and in other cases where history or physical exam suggest an increased risk of dysrhythmia. QT prolongation has also been reported in patients with no prior cardiac history who have received high doses of methadone. Patients developing QT prolongation while on methadone treatment should be evaluated for the presence of modifiable risk factors, such as concomitant medications with cardiac effects, drugs which might cause electrolyte abnormalities and drugs which might act as inhibitors of methadone metabolism.

The potential risks of methadone, including the risk of life-threatening arrhythmias, should be weighed against the risks of discontinuing methadone treatment. In the patient being treated for opiate dependence with methadone maintenance therapy, these risks include a very high likelihood of relapse to illicit drug use following methadone discontinuation.

The use of methadone in patients already known to have a prolonged QT interval has not been systematically studied. The potential risks of methadone should be weighed against the substantial morbidity and mortality associated with untreated opioid addiction.

When treating patients with methadone, an individualized benefit to risk assessment should be carried out and should include evaluation of patient presentation and complete medical history. For patients judged to be at risk, careful monitoring of cardiovascular status, including evaluation of QT prolongation and dysrhythmias should be performed.

Incomplete Cross-tolerance Between Methadone And Other Opioids

Patients tolerant to other opioids may be incompletely tolerant to methadone. Incomplete cross-tolerance is of particular concern for patients tolerant to other mu-opioid agonists who are being converted to methadone, thus making determination of dosing during opioid conversion complex. Deaths have been reported during conversion from chronic, high-dose treatment with other opioid agonists. A high degree of “opioid tolerance” does not eliminate the possibility of methadone overdose, iatrogenic or otherwise.

Misuse, Abuse, And Diversion Of Opioids

Methadone is a mu-agonist opioid with an abuse liability similar to that of morphine and other opioid agonists and is a Schedule II controlled substance. Methadone, like morphine and other opioids used for analgesia, has the potential for being abused and is subject to criminal diversion.

Methadone can be abused in a manner similar to other opioid agonists, legal or illicit. This should be considered when dispensing Methadose in situations where the clinician is concerned about an increased risk of misuse, abuse, or diversion. Abuse of methadone poses a risk of overdose and death. This risk is increased with concurrent abuse of methadone with alcohol and other substances. In addition, parenteral drug abuse is commonly associated with transmission of infectious diseases such as hepatitis and HIV.

Healthcare professionals should contact their State Professional Licensing Board or State Controlled Substances Authority for information on how to prevent and detect abuse or diversion of this product.

Interactions With Other CNS Depressants

Patients receiving other opioid analgesics, general anesthetics, phenothiazines or other tranquilizers, sedatives, hypnotics, or other CNS depressants (including alcohol) concomitantly with methadone may experience respiratory depression, hypotension, profound sedation, or coma (see PRECAUTIONS).

Interactions With Alcohol And Drugs of Abuse

Methadone may be expected to have additive effects when used in conjunction with alcohol, other opioids, or illicit drugs that cause central nervous system depression. Deaths associated with illicit use of methadone frequently have involved concomitant benzodiazepine abuse.

Head Injury And Increased Intracranial Pressure

The respiratory depressant effects of opioids and their capacity to elevate cerebrospinal-fluid pressure may be markedly exaggerated in the presence of head injury, other intracranial lesions or a pre-existing increase in intracranial pressure. Furthermore, opioids produce effects which may obscure the clinical course of patients with head injuries. In such patients, methadone must be used with caution, and only if it is deemed essential.

Acute Abdominal Conditions

The administration of opioids may obscure the diagnosis or clinical course of patients with acute abdominal conditions.

Hypotensive Effect

The administration of methadone may result in severe hypotension in patients whose ability to maintain normal blood pressure is compromised (e.g., severe volume depletion).


Methadose should be used with caution in elderly and debilitated patients; patients who are known to be sensitive to central nervous system depressants, such as those with cardiovascular, pulmonary, renal, or hepatic disease; and in patients with comorbid conditions or concomitant medications which may predispose to dysrhythmia or reduced ventilatory drive.

Carcinogenesis, Mutagenesis, Impairment Of Fertility


The results of carcinogenicity assessment in B6C2F1 mice and Fischer 344 rats following dietary administration of two doses of methadone HCl have been published. Mice consumed 15 mg/kg/day or 60 mg/kg/day methadone for two years. These doses were approximately 0.6 and 2.5 times a human daily oral dose of 120 mg/day on a body surface area basis (mg/m²). There was a significant increase in pituitary adenomas in female mice treated with 15 mg/kg/day but not with 60 mg/kg/day. Under the conditions of the assay, there was no clear evidence for a treatment-related increase in the incidence of neoplasms in male rats. Due to decreased food consumption in males at the high dose, male rats consumed 16 mg/kg/day and 28 mg/kg/day of methadone for two years. These doses were approximately 1.3 and 2.3 times a human daily oral dose of 120 mg/day, based on body surface area comparison. In contrast, female rats consumed 46 mg/kg/day or 88 mg/kg/day for two years. These doses were approximately 3.7 and 7.1 times a human daily oral dose of 120 mg/day, based on body surface area comparison. Under the conditions of the assay, there was no clear evidence for a treatment-related increase in the incidence of neoplasms in either male or female rats.


There are several published reports on the potential genetic toxicity of methadone. Methadone tested negative in tests for chromosome breakage and disjunction and sex-linked recessive lethal gene mutations in germ cells of Drosophila using feeding and injection procedures. In contrast, methadone tested positive in the in vivo mouse dominant lethal assay and the in vivo mammalian spermatogonial chromosome aberration test. Additionally, methadone tested positive in the E.coli DNA repair system and Neurospora crassa and mouse lymphoma forward mutation assays.


Reproductive function in human males may be decreased by methadone treatment. Reductions in ejaculate volume and seminal vesicle and prostate secretions have been reported in methadone-treated individuals. In addition, reductions in serum testosterone levels and sperm motility, and abnormalities in sperm morphology have been reported. Published animal studies provide additional data indicating that methadone treatment of males can alter reproductive function. Methadone produces a significant regression of sex accessory organs and testes of male mice and rats. Additional data have been published indicating that methadone treatment of male rats (once a day for three consecutive days) increased embryolethality and neonatal mortality. Examination of uterine contents of methadone-na´ve female mice bred to methadone-treated mice indicated that methadone treatment produced an increase in the rate of preimplantation deaths in all post-meiotic states.


Teratogenic Effects

Pregnancy Category C. There are no controlled studies of methadone use in pregnant women that can be used to establish safety. However, an expert review of published data on experiences with methadone use during pregnancy by the Teratogen Information System (TERIS) concluded that maternal use of methadone during pregnancy as part of a supervised, therapeutic regimen is unlikely to pose a substantial teratogenic risk (quantity and quality of data assessed as “limited to fair”). However, the data are insufficient to state that there is no risk (TERIS, last reviewed October, 2002). Pregnant women involved in methadone maintenance programs have been reported to have significantly improved prenatal care leading to significantly reduced incidence of obstetric and fetal complications and neonatal morbidity and mortality when compared to women using illicit drugs. Several factors complicate the interpretation of investigations of the children of women who take methadone during pregnancy. These include the maternal use of illicit drugs, other maternal factors such as nutrition, infection, and psychosocial circumstances, limited information regarding dose and duration of methadone use during pregnancy, and the fact that most maternal exposure appears to occur after the first trimester of pregnancy. Reported studies have generally compared the benefit of methadone to the risk of untreated addiction to illicit drugs.

Methadone has been detected in amniotic fluid and cord plasma at concentrations proportional to maternal plasma and in newborn urine at lower concentrations than corresponding maternal urine.

A retrospective series of 101 pregnant, opiate-dependent women who underwent inpatient opiate detoxification with methadone did not demonstrate any increased risk of miscarriage in the second trimester or premature delivery in the third trimester.

Several studies have suggested that infants born to narcotic-addicted women treated with methadone during all or part of pregnancy have been found to have decreased fetal growth with reduced birth weight, length, and/or head circumference compared to controls. This growth deficit does not appear to persist into later childhood. However, children born to women treated with methadone during pregnancy have been shown to demonstrate mild but persistent deficits in performance on psychometric and behavioral tests.

Additional information on the potential risks of methadone may be derived from animal data. Methadone does not appear to be teratogenic in the rat or rabbit models. However, following large doses, methadone produced teratogenic effects in the guinea pig, hamster and mouse. One published study in pregnant hamsters indicated that a single subcutaneous dose of methadone ranging from 31 to 185 mg/kg (the 31 mg/kg dose is approximately twice a human daily oral dose of 120 mg/day on a mg/m² basis) on day 8 of gestation resulted in a decrease in the number of fetuses per litter and an increase in the percentage of fetuses exhibiting congenital malformations described as exencephaly, cranioschisis, and “various other lesions.” The majority of the doses tested also resulted in maternal death. In another study, a single subcutaneous dose of 22 to 24 mg/kg methadone (estimated exposure was approximately equivalent to a human daily oral dose of 120 mg/day on a mg/m² basis) administered on day 9 of gestation in mice also produced exencephaly in 11% of the embryos. However, no effects were reported in rats and rabbits at oral doses up to 40 mg/kg (estimated exposure was approximately 3 and 6 times, respectively, a human daily oral dose of 120 mg/day on a mg/m² basis) administered during Days 6 to 15 and 6 to 18, respectively.

Nonteratogenetic Effects

Babies born to mothers who have been taking opioids regularly prior to delivery may be physically dependent. Onset of withdrawal symptoms in infants is usually in the first days after birth. Withdrawal signs in the newborn include irritability and excessive crying, tremors, hyperactive reflexes, increased respiratory rate, increased stools, sneezing, yawning, vomiting, and fever. The intensity of the syndrome does not always correlate with the maternal dose or the duration of maternal exposure. The duration of the withdrawal signs may vary from a few days to weeks or even months. There is no consensus on the appropriate management of infant withdrawal.

There are conflicting reports on whether SIDS occurs with an increased incidence in infants born to women treated with methadone during pregnancy.

Abnormal fetal nonstress tests (NSTs) have been reported to occur more frequently when the test is performed 1 to 2 hours after a maintenance dose of methadone in late pregnancy compared to controls.

Published animal data have reported increased neonatal mortality in the offspring of male rats that were treated with methadone prior to mating. In these studies, the female rats were not treated with methadone, indicating paternally-mediated developmental toxicity. Specifically, methadone administered to the male rat prior to mating with methadone-na´ve females resulted in decreased weight gain in progeny after weaning. The male progeny demonstrated reduced thymus weights, whereas the female progeny demonstrated increased adrenal weights. Furthermore, behavioral testing of these male and female progeny revealed significant differences in behavioral tests compared to control animals, suggesting that paternal methadone exposure can produce physiological and behavioral changes in progeny in this model. Other animal studies have reported that perinatal exposure to opioids including methadone alters neuronal development and behavior in the offspring. Perinatal methadone exposure in rats has been linked to alterations in learning ability, motor activity, thermal regulation, nociceptive responses and sensitivity to drugs. Additional animal data demonstrates evidence for neurochemical changes in the brains of methadone-treated offspring, including changes to the cholinergic, dopaminergic, noradrenergic and serotonergic systems. Additional studies demonstrated that methadone treatment of male rats for 21 to 32 days prior to mating with methadone-na´ve females did not produce any adverse effects, suggesting that prolonged methadone treatment of the male rat resulted in tolerance to the developmental toxicities noted in the progeny. Mechanistic studies in this rat model suggest that the developmental effects of “paternal” methadone on the progeny appear to be due to decreased testosterone production. These animal data mirror the reported clinical findings of decreased testosterone levels in human males on methadone maintenance therapy for opioid addiction and in males receiving chronic intraspinal opioids.

Clinical Pharmacology In Pregnancy

Pregnant women appear to have significantly lower trough plasma methadone concentrations, increased plasma methadone clearance, and shorter methadone half-life than after delivery. Dosage adjustment using higher doses or administering the daily dose in divided doses may be necessary in pregnant women treated with Methadose (see CLINICAL PHARMACOLOGY and DOSAGE AND ADMINISTRATION).

Methadone should be used during pregnancy only if the potential benefit justifies the potential risk to the fetus.

Labor And Delivery

As with all opioids, administration of this product to the mother shortly before delivery may result in some degree of respiratory depression in the newborn, especially if higher doses are used. Methadone is not recommended for obstetric analgesia because its long duration of action increases the probability of respiratory depression in the newborn. Narcotics with mixed agonist/antagonist properties should not be used for pain control during labor in patients chronically treated with methadone as they may precipitate acute withdrawal.

Nursing Mothers

Methadone is secreted into human milk. At maternal oral doses of 10 to 80 mg/day, methadone concentrations from 50 to 570 mcg/L in milk have been reported, which, in the majority of samples, were lower than maternal serum drug concentrations at steady state. Peak methadone levels in milk occur approximately 4 to 5 hours after an oral dose. Based on an average milk consumption of 150 mL/kg/day, an infant would consume approximately 17.4 mcg/kg/day which is approximately 2 to 3% of the oral maternal dose. Methadone has been detected in very low plasma concentrations in some infants whose mothers were taking methadone.

Caution should be exercised when methadone is administered to a nursing woman. There have been rare cases of sedation and respiratory depression in infants exposed to methadone through breast milk.

Mothers using methadone should receive specific information about how to identify respiratory depression and sedation in their babies. They should know when to contact their healthcare provider or seek immediate medical care. A healthcare provider should weigh the benefits of breastfeeding against the risks of infant exposure to methadone and possible exposure to other medicines.

Women being treated with methadone for any indication who are already breastfeeding should be counseled to wean breastfeeding gradually in order to prevent the development of withdrawal symptoms in the infant.

Methadone Maintenance Treatment For Opioid Dependence During Breastfeeding

Women on methadone maintenance therapy, who express a desire to breastfeed, should be informed of the risks and benefits of breastfeeding during pregnancy and immediately postpartum. The patient should clearly understand that, while breastfeeding, she should not use illicit substances or any other drug not prescribed by her healthcare provider. She should understand the reasons why use of additional drugs can increase risk to her breastfeeding infant beyond any risk from methadone.

Pediatric Use

Safety and effectiveness in pediatric patients below the age of 18 years have not been established.

Accidental or deliberate ingestion by a child may cause respiratory depression that can result in death. Patients and caregivers should be instructed to keep Methadose in a secure place out of the reach of children and to discard unused methadone in such a way that individuals other than the patient for whom it was originally prescribed will not come in contact with the drug.

Geriatric Use

Clinical studies of methadone did not include sufficient numbers of subjects aged 65 and over to determine whether they respond differently compared to younger subjects. Other reported clinical experience has not identified differences in responses between elderly and younger patients. In general, dose selection for elderly patients should be cautious, usually starting at the low end of the dosing range, reflecting the greater frequency of decreased hepatic, renal, or cardiac function and of concomitant disease or other drug therapy.

Renal Impairment

The use of methadone has not been extensively evaluated in patients with renal insufficiency.

Hepatic Impairment

The use of methadone has not been extensively evaluated in patients with hepatic insufficiency. Methadone is metabolized in the liver and patients with liver impairment may be at risk of accumulating methadone after multiple dosing.


The use of methadone has not been evaluated for gender specificity.

This monograph has been modified to include the generic and brand name in many instances.

Last reviewed on RxList: 5/17/2016


Report Problems to the Food and Drug Administration


You are encouraged to report negative side effects of prescription drugs to the FDA. Visit the FDA MedWatch website or call 1-800-FDA-1088.

Women's Health

Find out what women really need.