Recommended Topic Related To:

Nexterone

"Jan. 29, 2013 -- Older women with heart problems may be at greater risk for mental changes that are thought to signal the beginnings of a type of dementia, a new study shows.

Called vascular dementia, it is a type of mental decline that"...

Nexterone

Nexterone

SIDE EFFECTS

Clinical Trials Experience

Because clinical trials are conducted under widely varying conditions, adverse reaction rates observed in the clinical trials of a drug cannot be directly compared to rates in the clinical trials of another drug and may not reflect the rates observed in practice.

In a total of 1836 patients in controlled and uncontrolled clinical trials, 14% of patients received intravenous amiodarone for at least one week, 5% received it for at least 2 weeks, 2% received it for at least 3 weeks, and 1% received it for more than 3 weeks, without an increased incidence of severe adverse reactions. The mean duration of therapy in these studies was 5.6 days; median exposure was 3.7 days.

The most important adverse reactions were hypotension, asystole/cardiac arrest/pulseless electrical activity (PEA), cardiogenic shock, congestive heart failure, bradycardia, liver function test abnormalities, VT, and AV block. Overall, treatment was discontinued for about 9% of the patients because of adverse reactions. The most common adverse reactions leading to discontinuation of intravenous amiodaronejherapy were hypotension (1.6%), asystole/cardiac arrest/PEA (1.2%), VT (1.1%), and cardiogenic shock (1%).

Table 4 lists the most common (incidence ≥ 2%) adverse reactions during intravenous amiodarone therapy considered at least possibly drug-related. These data were collected in clinical trials involving 1836 patients with life-threatening VT/VF. Data from all assigned treatment groups are pooled because none of the adverse reactions appeared to be dose-related.

Table 4: ADVERSE REACTIONS IN PATIENTS RECEIVING INTRAVENOUS AMIODARONE IN CONTROLLED AND OPEN-LABEL STUDIES ( ≥ 2% INCIDENCE)

Study Event Controlled Studies
(n = 814)
Open-Label Studies
(n = 1022)
Total
(n = 1836)
Body as a whole
  Fever 24 (2.9%) 13 (1.2%) 37 (2.0%)
Cardiovascular System
  Bradycardia 49 (6.0%) 41 (4.0%) 90 (4.9%)
  Congestive heart failure 18 (2.2%) 21 (2.0%) 39 (2.1%)
  Heart arrest 29 (3.5%) 26 (2.5%) 55 (2.9%)
  Hypotension 165 (20.2%) 123 (12.0%) 288 (15.6%)
  Ventricular tachycardia 15 (1.8%) 30 (2.9%) 45 (2.4%)
Digestive System
  Liver function tests abnormal 35 (4.2%) 29 (2.8%) 64 (3.4%)
  Nausea 29 (3.5%) 43 (4.2%) 72 (3.9%)

Other adverse reactions reported in less than 2% of patients receiving intravenous amiodaronejn controlled and uncontrolled studies included the following: abnormal kidney function, atrial fibrillation, diarrhea, increased ALT, increased AST, lung edema, nodal arrhythmia, prolonged QT interval, respiratory disorder, shock, sinus bradycardia, Stevens-Johnson syndrome, thrombocytopenia, VF, and vomiting.

Post-Marketing Experience

The following adverse reactions have been identified during post-approval use of amiodarone. Because these reactions are reported voluntarily from a population of uncertain size, it is not always possible to reliably estimate their frequency or establish a causal relationship to drug exposure.

Body as a Whole: anaphylactic/anaphylactoid reaction (including shock), fever

Cardiovascular: hypotension (sometimes fatal), sinus arrest

Dermatologic: toxic epidermal necrolysis (sometimes fatal), exfoliative dermatitis, erythema multiforme, Stevens-Johnson syndrome, skin cancer, pruritus, angioedema

Endocrine: syndrome of inappropriate antidiuretic hormone secretion (SIADH)

Hematologic: pancytopenia, neutropenia, hemolytic anemia, aplastic anemia, thrombocytopenia, agranulocytosis, granuloma

Hepatic: hepatitis, cholestatic hepatitis, cirrhosis

Injection Site Reactions: pain, erythema, edema, pigment changes, venous thombosis, phlebitis, thrombophlebitis, cellulitis, necrosis, and skin sloughing

Musculoskeletal: myopathy, muscle weakness, rhabdomyolysis

Nervous System: hallucination, confusional state, disorientation, and delirium, pseudotumor cerebri

Pancreatic: pancreatitis

Renal: renal impairment, renal insufficiency, acute renal failure,

Respiratory: bronchospasm, possibly fatal respiratory disorders (including distress, failure, arrest and ARDS), bronchiolitis obliterans organizing pneumonia (possibly fatal), dyspnea, cough, hemoptysis, wheezing, hypoxia, pulmonary infiltrates, and /or mass, pleuritis

Thyroid: thyroid nodules/thyroid cancer

Vascular: vasculitis

Read the Nexterone (amiodarone hcl injection) Side Effects Center for a complete guide to possible side effects

DRUG INTERACTIONS

Amiodarone is metabolized to the active metabolite desethylamiodarone by the cytochrome P450 (CYP450) enzyme group, specifically cytochromes P4503A4 (CYP3A) and CYP2C8. The CYP3A isoenzyme is present in both the liver and intestines.

Amiodarone is an inhibitor of CYP3A. Therefore, amiodarone has the potential for interactions with drugs or substances that may be substrates, inhibitors or inducers of CYP3A. While only a limited number of in vivo drug-drug interactions with amiodarone have been reported, chiefly with the oral formulation, the potential for other interactions should be anticipated. This is especially important for drugs associated with serious toxicity, such as other antiarrhythmics. If such drugs are needed, reassess their dose and, where appropriate, measure plasma concentrations. In view of the long and variable half-life of amiodarone, potential for drug interactions exists not only with concomitant medication but also with drugs administered after discontinuation of amiodarone.

Since amiodarone is a substrate for CYP3A and CYP2C8, drugs/substances that inhibit these isoenzymes may decrease the metabolism and increase serum concentration of amiodarone. Reported examples include the following:

Protease inhibitors

Protease inhibitors are known to inhibit CYP3A to varying degrees. A case report of one patient taking amiodarone 200 mg and indinavir 800 mg three times a day resulted in increases in amiodarone concentrations from 0.9 mg/L to 1.3 mg/L. DEA concentrations were not affected. There was no evidence of toxicity. Consider monitoring for amiodarone toxicity and serial measurement of amiodarone serum concentration during concomitant protease inhibitor therapy.

Histamine H1 antagonists:

Loratadine, a non-sedating antihistaminic, is metabolized primarily by CYP3A. QT interval prolongation and TdP have been reported with the co-administration of loratadine and amiodarone.

Histamine H2 antagonists:

Cimetidine inhibits CYP3A and can increase serum amiodarone levels.

Antidepressants:

Trazodone, an antidepressant, is metabolized primarily by CYP3A. QT interval prolongation and TdP have been reported with the co-administration of trazodone and amiodarone.

Other substances

Grapefruit juice given to healthy volunteers increased amiodarone AUC by 50% and Cmax by 84%, resulting in increased plasma levels of amiodarone. Do not take grapefruit juice during treatment with amiodarone.

Amiodarone inhibits p-glycoprotein and certain CYP450 enzymes, including CYP1A2, CYP2C9, CYP2D6, and CYP3A. This inhibition can result in unexpectedly high plasma levels of other drugs which are metabolized by those CYP450 enzymes or are substrates for p-glycoprotein. Reported examples of this interaction include the following:

Immunosuppressives:

Cyclosporine (CYP3A substrate) administered in combination with oral amiodarone has been reported to produce persistently elevated plasma concentrations of cyclosporine resulting in elevated creatinine, despite reduction in dose of cyclosporine.

HMG-CoA Reductase Inhibitors:

The use of HMG-CoA reductase inhibitors that are CYP3A4 substrates in combination with amiodarone has been associated with reports of myopathy/rhabdomyolysis.

Limit the dose of simvastatin in patients on amiodarone to 20 mg daily. Limit the daily dose of lovastatin to 40 mg. Lower starting and maintenance doses of other CYP3A4 substrates (e.g., atorvastatin) may be required as amiodarone may increase the plasma concentration of these drugs.

Cardiovasculars

Cardiac glycosides: In patients receiving digoxin therapy, administration of oral amiodarone regularly results in an increase in serum digoxin concentration that may reach toxic levels with resultant clinical toxicity. Amiodarone taken concomitantly with digoxin increases the serum digoxin concentration by 70% after one day. On administration of oral amiodarone, review the need for digitalis therapy and reduce the dose of digitalis by approximately 50% or discontinue digitalis. If digitalis treatment is continued, monitor serum levels closely and observe patients for clinical evidence of toxicity.

Antiarrhythmics

Other antiarrhythmic drugs, such as quinidine, procainamide, disopyramide, and phenytoin, have been used concurrently with amiodarone. There have been case reports of increased steady-state levels of quinidine, procainamide, and phenytoin during concomitant therapy with amiodarone. Phenytoin decreases serum amiodarone levels. Amiodarone taken concomitantly with quinidine increases quinidine serum concentration by 33% after two days. Amiodarone taken concomitantly with procainamide for less than seven days increases plasma concentrations of procainamide and n-acetyl procainamide by 55% and 33%, respectively. Reduce quinidine and procainamide doses by one-third when either is administered with amiodarone.

Plasma levels of flecainide have been reported to increase in the presence of oral amiodarone; adjust the dose of flecainide when these drugs are administered concomitantly. In general, initiate any added antiarrhythmic drug at a lower than usual dose and monitor the patient carefully.

Reserve the combination of amiodarone with other antiarrhythmic therapy to patients with life-threatening ventricular arrhythmias who are incompletely responsive to a single agent or incompletely responsive to amiodarone. During transfer to oral amiodarone, reduce the dose levels of previously administered agents by 30 to 50% several days after the addition of oral amiodarone. Review the continued need for the other antiarrhythmic agent after the effects of amiodarone have been established, and attempt discontinuation. If the treatment is continued, carefully monitor these patients for adverse effects, especially for conduction disturbances and exacerbation of tachyarrhythmias. In amiodarone-treated patients who require additional antiarrhythmic therapy, the initial dose of such agents should be approximately half of the usual recommended dose.

Antihypertensives

Use amiodarone with caution in patients receiving β-receptor blocking agents (e.g., propranolol, a CYP3A inhibitor) or calcium channel antagonists (e.g., verapamil, a CYP3A substrate, and diltiazem, a CYP3A inhibitor) because of the possible potentiation of bradycardia, sinus arrest, and AV block; if necessary, amiodarone can continue to be used after insertion of a pacemaker in patients with severe bradycardia or sinus arrest.

Anticoagulants

Potentiation of warfarin-type (CYP2C9 and CYP3A substrate) anticoagulant response is almost always seen in patients receiving amiodarone and can result in serious or fatal bleeding. Since the concomitant administration of warfarin with amiodarone increases the prothrombin time by 100% after 3 to 4 days, reduce the dose of the anticoagulant by one-third to one-half, and monitor prothrombin times closely.

Clopidogrel, an inactive thienopyridine prodrug, is metabolized in the liver by CYP3 A to an active metabolite. A potential interaction between clopidogrel and amiodarone resulting in ineffective inhibition of platelet aggregation has been reported.

Some drugs/substances are known to accelerate the metabolism of amiodarone by stimulating the synthesis of CYP3A (enzyme induction). This may lead to low amiodarone serum levels and potential decrease in efficacy. Reported examples of this interaction include the following:

Antibiotics

Rifampin is a potent inducer of CYP3A. Administration of rifampin concomitantly with oral amiodarone has been shown to result in decreases in serum concentrations of amiodarone and desethylamiodarone.

Other substances, including herbal preparations

St. John's Wort (Hypericum perforatum) induces CYP3A. Since amiodarone is a substrate for CYP3A, St. John's Wort likely reduces amiodarone levels.

Other reported interactions with amiodarone

Fentanyl (CYP3A substrate) in combination with amiodarone may cause hypotension, bradycardia, and decreased cardiac output.

Sinus bradycardia has been reported with oral amiodarone in combination with lidocaine (CYP3A substrate) given for local anesthesia. Seizure, associated with increased lidocaine concentrations, has been reported with concomitant administration of intravenous amiodarone.

Dextromethorphan is a substrate for both CYP2D6 and CYP3 A. Amiodarone inhibits CYP2D6.

Cholestyramine increases enterohepatic elimination of amiodarone and may reduce its serum levels and t½.

Disopyramide causes QT prolongation which could induce arrhythmia.

Fluoroquinolones, macrolide antibiotics, and azoles are known to cause QTc prolongation. There have been reports of QTc prolongation, with or without TdP, in patients taking amiodarone when fluoroquinolones, macrolide antibiotics, or azoles were administered concomitantly [see WARNINGS AND PRECAUTIONS].

Hemodynamic and electrophysiologic interactions have also been observed after concomitant administration with propranolol, diltiazem, andverapamil.

Volatile Anesthetic Agents: Patients who are on amiodarone therapy may be more sensitive to the myocardial depressant and conduction defects of halogenated inhalational anesthetics [see WARNINGS AND PRECAUTIONS].

In addition to the interactions noted above, chronic ( > 2 weeks) oral amiodarone administration impairs metabolism of phenytoin, dextromethorphan, and methotrexate.

Read the Nexterone Drug Interactions Center for a complete guide to possible interactions

Last reviewed on RxList: 1/6/2012
This monograph has been modified to include the generic and brand name in many instances.

A A A

Report Problems to the Food and Drug Administration

 

You are encouraged to report negative side effects of prescription drugs to the FDA. Visit the FDA MedWatch website or call 1-800-FDA-1088.


Heart Health

Get the latest treatment options.

advertisement
advertisement
Use Pill Finder Find it Now See Interactions

Pill Identifier on RxList

  • quick, easy,
    pill identification

Find a Local Pharmacy

  • including 24 hour, pharmacies

Interaction Checker

  • Check potential drug interactions
Search the Medical Dictionary for Health Definitions & Medical Abbreviations