Recommended Topic Related To:

Pulmicort Respules

"Nov. 23, 2011 -- Daily inhaled steroids are currently recommended for preschoolers with frequent wheezing who have a high risk for developing persistent asthma or high risk for severe asthma, but the treatment may cause a small decrease in their "...

Pulmicort Respules

Pulmicort Respules

WARNINGS

Included as part of the PRECAUTIONS section.

PRECAUTIONS

Local Effects

In clinical trials with PULMICORT RESPULES (budesonide inhalation suspension) , localized infections with Candida albicans occurred in the mouth and pharynx in some patients. The incidences of localized infections of Candida albicans were similar between the placebo and PULMICORT RESPULES (budesonide inhalation suspension) treatment groups. If these infections develop, they may require treatment with appropriate local or systemic antifungal therapy and/or discontinuance of treatment with PULMICORT RESPULES (budesonide inhalation suspension) . Patients should rinse the mouth after inhalation of PULMICORT RESPULES (budesonide inhalation suspension) .

Deterioration of Disease and Acute Asthma Episodes

PULMICORT RESPULES (budesonide inhalation suspension) is not a bronchodilator and is not indicated for the rapid relief of acute bronchospasm or other acute episodes of asthma.

Patients should be instructed to contact their physician immediately if episodes of asthma not responsive to their usual doses of bronchodilators occur during the course of treatment with PULMICORT RESPULES (budesonide inhalation suspension) . During such episodes, patients may require therapy with oral corticosteroids.

Hypersensitivity Reactions Including Anaphylaxis

Hypersensitivity reactions including anaphylaxis, rash, contact dermatitis, urticaria, angioedema, and bronchospasm have been reported with use of PULMICORT RESPULES. Discontinue PULMICORT RESPULES if such reactions occur [see CONTRAINDICATIONS].

Immunosuppression

Patients who are on drugs that suppress the immune system are more susceptible to infection than healthy individuals. Chicken pox and measles, for example, can have a more serious or even fatal course in susceptible children or adults using corticosteroids. In children or adults who have not had these diseases, or been properly immunized, particular care should be taken to avoid exposure. How the dose, route, and duration of corticosteroid administration affect the risk of developing a disseminated infection is not known. The contribution of the underlying disease and/or prior corticosteroid treatment to the risk is also not known. If exposed to chicken pox, therapy with varicella zoster immune globulin (VZIG) or pooled intravenous immunoglobulin (IVIG), as appropriate, may be indicated. If exposed to measles, prophylaxis with pooled intramuscular immunoglobulin (IG) may be indicated. (See the respective package inserts for complete VZIG and IG prescribing information.) If chicken pox develops, treatment with antiviral agents may be considered.

The clinical course of chicken pox or measles infection in patients on inhaled corticosteroids has not been studied. However, a clinical study has examined the immune responsiveness of asthma patients 12 months to 8 years of age who were treated with PULMICORT RESPULES (budesonide inhalation suspension) . An open-label non-randomized clinical study examined the immune responsiveness of varicella vaccine in 243 asthma patients 12 months to 8 years of age who were treated with PULMICORT RESPULES (budesonide inhalation suspension) 0.25 mg to 1 mg daily (n=151) or noncorticosteroid asthma therapy (n=92) (ie, beta2-agonists, leukotriene receptor antagonists, cromones). The percentage of patients developing a seroprotective antibody titer of ≥ 5.0 (gpELISA value) in response to the vaccination was similar in patients treated with PULMICORT RESPULES (85%) compared to patients treated with non-corticosteroid asthma therapy (90%). No patient treated with PULMICORT RESPULES (budesonide inhalation suspension) developed chicken pox as a result of vaccination.

Inhaled corticosteroids should be used with caution, if at all, in patients with active or quiescent tuberculosis infection of the respiratory tract, untreated systemic fungal, bacterial, viral, or parasitic infections; or ocular herpes simplex.

Transferring Patients from Systemic Corticosteroid Therapy

Particular care is needed for patients who are transferred from systemically active corticosteroids to inhaled corticosteroids because deaths due to adrenal insufficiency have occurred in asthmatic patients during and after transfer from systemic corticosteroids to less systemically available inhaled corticosteroids. After withdrawal from systemic corticosteroids, a number of months are required for recovery of hypothalamic-pituitary-adrenal (HPA)-axis function.

Patients who have been previously maintained on 20 mg or more per day of prednisone (or its equivalent) may be most susceptible, particularly when their systemic corticosteroids have been almost completely withdrawn.

During this period of HPA-axis suppression, patients may exhibit signs and symptoms of adrenal insufficiency when exposed to trauma, surgery, infection (particularly gastroenteritis) or other conditions associated with severe electrolyte loss. Although PULMICORT RESPULES (budesonide inhalation suspension) may provide control of asthma symptoms during these episodes, in recommended doses it supplies less than normal physiological amounts of glucocorticosteroid systemically and does NOT provide the mineralocorticoid activity that is necessary for coping with these emergencies.

During periods of stress or a severe asthma attack, patients who have been withdrawn from systemic corticosteroids should be instructed to resume oral corticosteroids (in large doses) immediately and to contact their physicians for further instructions. These patients should also be instructed to carry a medical identification card indicating that they may need supplementary systemic corticosteroids during periods of stress or a severe asthma attack.

Patients requiring oral corticosteroids should be weaned slowly from systemic corticosteroid use after transferring to PULMICORT RESPULES (budesonide inhalation suspension) . Initially, PULMICORT RESPULES should be used concurrently with the patient's usual maintenance dose of systemic corticosteroid. After approximately one week, gradual withdrawal of the systemic corticosteroid may be initiated by reducing the daily or alternate daily dose. Further incremental reductions may be made after an interval of one or two weeks, depending on the response of the patient. Generally, these decrements should not exceed 25% of the prednisone dose or its equivalent. A slow rate of withdrawal is strongly recommended.

Lung function (FEV1 or AM PEF), beta-agonist use, and asthma symptoms should be carefully monitored during withdrawal of oral corticosteroids. In addition to monitoring asthma signs and symptoms, patients should be observed for signs and symptoms of adrenal insufficiency such as fatigue, lassitude, weakness, nausea and vomiting, and hypotension.

Transfer of patients from systemic corticosteroid therapy to PULMICORT RESPULES (budesonide inhalation suspension) may unmask allergic or other immunologic conditions previously suppressed by the systemic corticosteroid therapy, e.g., rhinitis, conjunctivitis, eosinophilic conditions, eczema, and arthritis [see DOSAGE AND ADMINISTRATION].

During withdrawal from oral corticosteroids, patients may experience symptoms of systemically active corticosteroid withdrawal (e.g., joint and/or muscular pain, lassitude, depression) despite maintenance or even improvement of respiratory function.

Hypercorticism and Adrenal Suppression

PULMICORT RESPULES (budesonide inhalation suspension) , will often help control asthma symptoms with less suppression of HPA function than therapeutically equivalent oral doses of prednisone. Since individual sensitivity to effects on cortisol production exists, physicians should consider this information when prescribing PULMICORT RESPULES (budesonide inhalation suspension) . Because of the possibility of systemic absorption of inhaled corticosteroids, patients treated with PULMICORT RESPULES (budesonide inhalation suspension) should be observed carefully for any evidence of systemic corticosteroid effects. Particular care should be taken in observing patients post-operatively or during periods of stress for evidence of inadequate adrenal response. It is possible that systemic corticosteroid effects such as hypercorticism, and adrenal suppression (including adrenal crisis) may appear in a small number of patients, particularly when budesonide is administered at higher than recommended doses over prolonged periods of time. If such effects occur, the dosage of PULMICORT RESPULES (budesonide inhalation suspension) should be reduced slowly, consistent with accepted procedures for tapering of systemic corticosteroids and for management of asthma.

Reduction in Bone Mineral Density

Decreases in bone mineral density (BMD) have been observed with long-term administration of products containing inhaled corticosteroids. The clinical significance of small changes in BMD with regard to long-term outcomes is unknown. Patients with major risk factors for decreased bone mineral content, such as prolonged immobilization, family history of osteoporosis, poor nutrition, or chronic use of drugs that can reduce bone mass (e.g., anticonvulsants and corticosteroids), should be monitored and treated with established standards of care.

Effects on Growth

Orally inhaled corticosteroids, including budesonide, may cause a reduction in growth velocity when administered to pediatric patients. Monitor the growth of pediatric patients receiving PULMICORT RESPULES (budesonide inhalation suspension) routinely (e.g., via stadiometry). To minimize the systemic effects of orally inhaled corticosteroids, including PULMICORT RESPULES (budesonide inhalation suspension) , each patient should be titrated to his/her lowest effective dose [see Use In Specific Populations, Pediatric Use ].

Glaucoma and Cataracts

Glaucoma, increased intraocular pressure, and cataracts have been reported following the long-term administration of inhaled corticosteroids, including budesonide. Therefore, close monitoring is warranted in patients with a change in vision or with a history of increased intraocular pressure, glaucoma, and/or cataracts.

Paradoxical Bronchospasm and Upper Airway Symptoms

As with other inhaled asthma medications, bronchospasm, with an immediate increase in wheezing, may occur after dosing. If acute bronchospasm occurs following dosing with PULMICORT RESPULES (budesonide inhalation suspension) , it should be treated immediately with a fast-acting inhaled bronchodilator. Treatment with PULMICORT RESPULES (budesonide inhalation suspension) should be discontinued and alternate therapy instituted.

Eosinophilic Conditions and Churg-Strauss Syndrome

In rare cases, patients on inhaled corticosteroids may present with systemic eosinophilic conditions. Some of these patients have clinical features of vasculitis consistent with Churg- Strauss syndrome, a condition that is often treated with systemic corticosteroids therapy. These events usually, but not always, have been associated with the reduction and/or withdrawal of oral corticosteroid therapy following the introduction of inhaled corticosteroids. Healthcare providers should be alert to eosinophilia, vasculitis rash, worsening pulmonary symptoms, cardiac complications, and/or neuropathy presenting in their patients. A causal relationship between budesonide and these underlying conditions has not been established.

Drug Interactions with Strong Cytochrome P450 3A4 Inhibitors

Caution should be exercised when considering the coadministration of PULMICORT RESPULES with ketoconazole, and other known strong CYP3A4 inhibitors (e.g., ritonavir, atazanavir, clarithromycin, indinavir, itraconazole, nefazodone, nelfinavir, saquinavir, telithromycin) because adverse effects related to increased systemic exposure to budesonide may occur [see DRUG INTERACTIONS and CLINICAL PHARMACOLOGY, Clinical Pharmacokinetics].

Patient Counseling Information

Administration with a Jet Nebulizer

Patients should be advised that PULMICORT RESPULES (budesonide inhalation suspension) should be administered with a jet nebulizer connected to a compressor with an adequate air flow, equipped with a mouthpiece or suitable face mask. Ultrasonic nebulizers are not suitable for the adequate administration of PULMICORT RESPULES (budesonide inhalation suspension) and, therefore, are not recommended. The effects of mixing PULMICORT RESPULES (budesonide inhalation suspension) with other nebulizable medications have not been adequately assessed. PULMICORT RESPULES (budesonide inhalation suspension) should be administered separately in the nebulizer [see DOSAGE AND ADMINISTRATION].

Oral Candidiasis

Patients should be advised that localized infections with Candida albicans occurred in the mouth and pharynx in some patients. If oropharyngeal candidiasis develops, it should be treated with appropriate local or systemic (i.e. oral) antifungal therapy while still continuing therapy with PULMICORT RESPULES (budesonide inhalation suspension) , but at times therapy with PULMICORT RESPULES (budesonide inhalation suspension) may need to be temporarily interrupted under close medical supervision. Rinsing the mouth after inhalation is advised [see WARNINGS AND PRECAUTIONS].

Not for Acute Symptoms

PULMICORT RESPULES (budesonide inhalation suspension) is not meant to relieve acute asthma symptoms and extra doses should not be used for that purpose. Acute symptoms should be treated with an inhaled, short-acting beta2-agonist such as albuterol. (The healthcare professional should provide that patient with such medication and instruct the patient in how it should be used.) Patients should be instructed to notify their healthcare professional immediately if they experience any of the following:

  • Decreasing effectiveness of inhaled, short-acting beta2-agonists
  • Need for more inhalations than usual of inhaled, short- acting beta2-agonists
  • Significant decrease in lung function as outlined by the physician

Patients should not stop therapy with PULMICORT RESPULES (budesonide inhalation suspension) without physician/provider guidance since symptoms may recur after discontinuation [see WARNINGS AND PRECAUTIONS]

Hypersensitivity including Anaphylaxis

Hypersensitivity reactions including anaphylaxis, rash, contact dermatitis, urticaria, angioedema, and bronchospasm have been reported with use of PULMICORT RESPULES. Discontinue PULMICORT RESPULES if such reactions occur [see CONTRAINDICATIONS; WARNINGS AND PRECAUTIONS].

Immunosuppression

Patients who are on immunosuppressant doses of corticosteroids should be warned to avoid exposure to chickenpox or measles and, if exposed, to consult their physician without delay. If exposure to such a person occurs, and the child has not had chicken pox or been properly vaccinated, a physician should be consulted without delay. Patients should be informed of potential worsening of existing tuberculosis, fungal, bacterial, viral, or parasitic infections, or ocular herpes simplex [see WARNINGS AND PRECAUTIONS].

Hypercorticism and Adrenal Suppression

Patients should be advised that PULMICORT RESPULES (budesonide inhalation suspension) may cause systemic corticosteroid effects of hypercorticism and adrenal suppression. Additionally, patients should be instructed that deaths due to adrenal insufficiency have occurred during and after transfer from systemic corticosteroids. Patients should taper slowly from systemic corticosteroids if transferring to PULMICORT RESPULES (budesonide inhalation suspension) [see WARNINGS AND PRECAUTIONS].

Reduction in Bone Mineral Density

Patients who are at an increased risk for decreased BMD should be advised that the use of corticosteroids may pose an additional risk [see WARNINGS AND PRECAUTIONS]

Reduced Growth Velocity

Patients should be informed that orally inhaled corticosteroids, including PULMICORT RESPULES (budesonide inhalation suspension) , may cause a reduction in growth velocity when administered to pediatric patients. Healthcare professionals should closely follow the growth of children and adolescents taking corticosteroids by any route [see WARNINGS AND PRECAUTIONS].

Ocular Effects

Long-term use of inhaled corticosteroids may increase the risk of some eye problems (cataracts or glaucoma); regular eye examinations should be considered [see WARNINGS AND PRECAUTIONS].

Use Daily

Patients should be advised to use PULMICORT RESPULES (budesonide inhalation suspension) at regular intervals once or twice a day, since its effectiveness depends on regular use. Maximum benefit may not be achieved for 4 to 6 weeks or longer after starting treatment. If symptoms do not improve in that time frame or if the condition worsens, patients should be instructed to contact their healthcare professional.

FDA-Approved Patient Labeling

See accompanying PATIENT INFORMATION and Instructions for Use.

Nonclinical Toxicology

Carcinogenesis, Mutagenesis, Impairment of Fertility

In a two-year study in Sprague-Dawley rats, budesonide caused a statistically significant increase in the incidence of gliomas in male rats at an oral dose of 50 mcg/kg (approximately 0.4 and 0.1 times, respectively, the maximum recommended daily inhalation dose in adults and children 12 months to 8 years of age on a mcg/m² basis). No tumorigenicity was seen in male rats at oral doses up to 25 mcg/kg (approximately 0.2 and 0.06 times, respectively, the maximum recommended daily inhalation dose in adults and children 12 months to 8 years of age on a mcg/m² basis) and in female rats at oral doses up to 50 mcg/kg (approximately 0.4 and 0.1 times, respectively, the maximum recommended daily inhalation dose in adults and children 12 months to 8 years of age on a mcg/m² basis). In two additional two-year studies in male Fischer and Sprague-Dawley rats, budesonide caused no gliomas at an oral dose of 50 mcg/kg (approximately 0.4 and 0.1 times, respectively, the maximum recommended daily inhalation dose in adults and children 12 months to 8 years of age on a mcg/m² basis). However, in the male Sprague-Dawley rats, budesonide caused a statistically significant increase in the incidence of hepatocellular tumors at an oral dose of 50 mcg/kg (approximately 0.4 and 0.1 times, respectively, the maximum recommended daily inhalation dose in adults and children 12 months to 8 years of age on a mcg/m² basis). The concurrent reference corticosteroids (prednisolone and triamcinolone acetonide) in these two studies showed similar findings.

In a 91-week study in mice, budesonide caused no treatment-related carcinogenicity at oral doses up to 200 mcg/kg (approximately 0.8 and 0.2 times, respectively, the maximum recommended daily inhalation dose in adults and children 12 months to 8 years of age on a mcg/m² basis).

Budesonide was not mutagenic or clastogenic in six different test systems: Ames Salmonella/microsome plate test, mouse micronucleus test, mouse lymphoma test, chromosome aberration test in human lymphocytes, sex-linked recessive lethal test in Drosophila melanogaster, and DNA repair analysis in rat hepatocyte culture.

In rats, budesonide had no effect on fertility at subcutaneous doses up to 80 mcg/kg approximately 0.6 times the maximum recommended daily inhalation dose in adults on a mcg/m² basis. However, it caused a decrease in prenatal viability and viability in the pups at birth and during lactation, along with a decrease in maternal body-weight gain, at subcutaneous doses of 20 mcg/kg and above approximately 0.2 times than the maximum recommended daily inhalation dose in adults on a mcg/m² basis. No such effects were noted at 5 mcg/kg (approximately 0.04 times the maximum recommended daily inhalation dose in adults on a mcg/m² basis).

Use In Specific Populations

Pregnancy -

Teratogenic Effects

Pregnancy Category B – Studies of pregnant women, have not shown that inhaled budesonide increases the risk of abnormalities when administered during pregnancy. The results from a large population-based prospective cohort epidemiological study reviewing data from three Swedish registries covering approximately 99% of the pregnancies from 1995-1997 (ie, Swedish Medical Birth Registry; Registry of Congenital Malformations; Child Cardiology Registry) indicate no increased risk for congenital malformations from the use of inhaled budesonide during early pregnancy. Congenital malformations were studied in 2014 infants born to mothers reporting the use of inhaled budesonide for asthma in early pregnancy (usually 10-12 weeks after the last menstrual period), the period when most major organ malformations occur. The rate of recorded congenital malformations was similar compared to the general population rate (3.8% vs. 3.5%, respectively). In addition, after exposure to inhaled budesonide, the number of infants born with orofacial clefts was similar to the expected number in the normal population (4 children vs. 3.3, respectively).

These same data were utilized in a second study bringing the total to 2534 infants whose mothers were exposed to inhaled budesonide. In this study, the rate of congenital malformations among infants whose mothers were exposed to inhaled budesonide during early pregnancy was not different from the rate for all newborn babies during the same period (3.6%).

Despite the animal findings, it would appear that the possibility of fetal harm is remote if the drug is used during pregnancy. Nevertheless, because the studies in humans cannot rule out the possibility of harm, PULMICORT RESPULES (budesonide inhalation suspension) should be used during pregnancy only if clearly needed.

As with other corticosteroids, budesonide was teratogenic and embryocidal in rabbits and rats. Budesonide produced fetal loss, decreased pup weights, and skeletal abnormalities at a subcutaneous dose in rabbits that was approximately 0.4 times the maximum recommended daily inhalation dose in adults on a mcg/m² basis and at subcutaneous dose that was approximately 4 times the maximum recommended daily inhalation dose in adults on a mcg/m² basis. In another study in rats, no teratogenic or embryocidal effects were seen at inhalation doses up to approximately 2 times the maximum recommended daily inhalation dose in adults on a mcg/m² basis.

Experience with oral corticosteroids since their introduction in pharmacologic, as opposed to physiologic, doses suggests that rodents are more prone to teratogenic effects from corticosteroids than humans.

Non-teratogenic Effects

Hypoadrenalism may occur in infants born of mothers receiving corticosteroids during pregnancy. Such infants should be carefully observed.

Nursing Mothers

Budesonide, like other corticosteroids, is secreted in human milk. Data with budesonide delivered via dry powder inhaler indicates that the total daily oral dose of budesonide in breast milk to the infant is approximately 0.3% to 1% of the dose inhaled by the mother [see CLINICAL PHARMACOLOGY, Pharmacokinetics, and Use In Specific Populations, Nursing Mothers]. No studies have been conducted in breastfeeding women with PULMICORT RESPULES; however, the dose of budesonide available to the infant in breast milk, as a percentage of the maternal dose, would be expected to be similar. PULMICORT RESPULES should be used in nursing women only if clinically appropriate. Prescribers should weigh the known benefits of breastfeeding for the mother and the infant against the potential risks of minimal budesonide exposure in the infant.

Pediatric Use

Safety and effectiveness in children six months to 12 months of age has been evaluated but not established. Safety and effectiveness in children 12 months to 8 years of age have been established [see CLINICAL PHARMACOLOGY, Pharmacodynamics, and ADVERSE REACTIONS, Clinical Trials Experience].

A 12-week study in 141 pediatric patients 6 to 12 months of age with mild to moderate asthma or recurrent/persistent wheezing was conducted. All patients were randomized to receive either 0.5 mg or 1 mg of PULMICORT RESPULES (budesonide inhalation suspension) or placebo once daily. Adrenal-axis function was assessed with an ACTH stimulation test at the beginning and end of the study, and mean changes from baseline in this variable did not indicate adrenal suppression in patients who received PULMICORT RESPULES versus placebo. However, on an individual basis, 7 patients in this study (6 in the PULMICORT RESPULES (budesonide inhalation suspension) treatment arms and 1 in the placebo arm) experienced a shift from having a normal baseline stimulated cortisol level to having a subnormal level at Week 12 [see CLINICAL PHARMACOLOGY, Pharmacodynamics]. Pneumonia was observed more frequently in patients treated with PULMICORT RESPULES (budesonide inhalation suspension) than in patients treated with placebo, (N = 2, 1, and 0) in the PULMICORT RESPULES (budesonide inhalation suspension) 0.5 mg, 1 mg, and placebo groups, respectively.

A dose dependent effect on growth was also noted in this 12week trial. Infants in the placebo arm experienced an average growth of 3.7 cm over 12 weeks compared with 3.5 cm and 3.1 cm in the PULMICORT RESPULES (budesonide inhalation suspension) 0.5 mg and 1 mg arms respectively. This corresponds to estimated mean (95% CI) reductions in 12-week growth velocity between placebo and PULMICORT RESPULES (budesonide inhalation suspension) 0.5 mg of 0.2 cm (-0.6 to 1.0) and between placebo and PULMICORT RESPULES (budesonide inhalation suspension) 1 mg of 0.6 cm (-0.2 to 1.4). These findings support that the use of PULMICORT RESPULES (budesonide inhalation suspension) in infants 6 to 12 months of age may result in systemic effects and are consistent with findings of growth suppression in other studies with inhaled corticosteroids.

Controlled clinical studies have shown that inhaled corticosteroids may cause a reduction in growth velocity in pediatric patients. In these studies, the mean reduction in growth velocity was approximately one centimeter per year (range 0.3 to 1.8 cm per year) and appears to be related to dose and duration of exposure. This effect has been observed in the absence of laboratory evidence of hypothalamic-pituitary-adrenal (HPA)-axis suppression, suggesting that growth velocity is a more sensitive indicator of systemic corticosteroid exposure in pediatric patients than some commonly used tests of HPA-axis function. The long-term effects of this reduction in growth velocity associated with orally inhaled corticosteroids, including the impact on final adult height, are unknown. The potential for “catch up” growth following discontinuation of treatment with orally inhaled corticosteroids has not been adequately studied.

In a study of asthmatic children 5-12 years of age, those treated with budesonide administered via a dry powder inhaler 200 mcg twice daily (n=311) had a 1.1-centimeter reduction in growth compared with those receiving placebo (n=418) at the end of one year; the difference between these two treatment groups did not increase further over three years of additional treatment. By the end of four years, children treated with the budesonide dry powder inhaler and children treated with placebo had similar growth velocities. Conclusions drawn from this study may be confounded by the unequal use of corticosteroids in the treatment groups and inclusion of data from patients attaining puberty during the course of the study.

The growth of pediatric patients receiving inhaled corticosteroids, including PULMICORT RESPULES (budesonide inhalation suspension) , should be monitored routinely (e.g., via stadiometry). The potential growth effects of prolonged treatment should be weighed against clinical benefits obtained and the risks and benefits associated with alternative therapies. To minimize the systemic effects of inhaled corticosteroids, including PULMICORT RESPULES, each patient should be titrated to his/her lowest effective dose [see DOSAGE AND ADMINISTRATION and WARNINGS AND PRECAUTIONS].

Geriatric Use

Of the 215 patients in 3 clinical trials of PULMICORT RESPULES (budesonide inhalation suspension) in adult patients, 65 (30%) were 65 years of age or older, while 22 (10%) were 75 years of age or older. No overall differences in safety were observed between these patients and younger patients, and other reported clinical or medical surveillance experience has not identified differences in responses between the elderly and younger patients.

Hepatic Impairment

Formal pharmacokinetic studies using PULMICORT RESPULES (budesonide inhalation suspension) have not been conducted in patients with hepatic impairment. However, since budesonide is predominantly cleared by hepatic metabolism, impairment of liver function may lead to accumulation of budesonide in plasma. Therefore, patients with hepatic disease should be closely monitored.

Last reviewed on RxList: 7/29/2010
This monograph has been modified to include the generic and brand name in many instances.

A A A

Pulmicort Respules - User Reviews

Pulmicort Respules User Reviews

Now you can gain knowledge and insight about a drug treatment with Patient Discussions.

Here is a collection of user reviews for the medication Pulmicort Respules sorted by most helpful. Patient Discussions FAQs

Report Problems to the Food and Drug Administration

 

You are encouraged to report negative side effects of prescription drugs to the FDA. Visit the FDA MedWatch website or call 1-800-FDA-1088.


Allergies & Asthma

Improve treatments & prevent attacks.

Health Resources
advertisement
advertisement
Use Pill Finder Find it Now See Interactions

Pill Identifier on RxList

  • quick, easy,
    pill identification

Find a Local Pharmacy

  • including 24 hour, pharmacies

Interaction Checker

  • Check potential drug interactions
Search the Medical Dictionary for Health Definitions & Medical Abbreviations