Recommended Topic Related To:

Rifater

"The U.S. Food and Drug Administration today approved Vimizim (elosulfase alfa), the first FDA-approved treatment for Mucopolysaccharidosis Type IVA (Morquio A syndrome). Morquio A syndrome is a rare, autosomal recessive lysosomal storage disease "...

Rifater

SIDE EFFECTS

Adverse Experiences During the Clinical Trial

Adverse event data reported for the RIFATER and the separate drug treatment groups during the first 2 months of the trial are shown in the table below.

Adverse Events Reported During the Clinical Study

Adverse Events by Body Systems During First 2 Months of Trial Number of Patients With Adverse Events*
RIFATER
n = 122‡
Separate†
n = 123‡
Cutaneous (rash, erythroderma, erythema, exfoliative dermatitis, Lyell syndrome, urticaria, localized skin rash, diffuse skin rash, pruritus, generalized hypersensitivity) 8 (7%) 21 (17%)
Gastrointestinal (nausea, vomiting, digestive pain, diarrhea) 8 (7%) 14 (11%)
Musculoskeletal (arthralgia, long bones pain, phlebitis, localized joint pain, diffuse joint pain, edema of the legs) 5 (4%) 8 (7%)
Hearing and Vestibular (tinnitus, vertigo, vertigo with loss of equilibrium) 3 (2%) 6 (5%)
Liver and Biliary (hepatitis with conjunctival jaundice, hepatitis with deep jaundice) 0 (0%) 2 (2%)
Central and Peripheral Nervous System (sweating, headache, insomnia, diffuse paresthesia of the legs, anxiety, diabetic coma) 5 (4%) 4 (3%)
Total Body (spiking fever, persistent fever) 2 (2%) 4 (3%)
Cardiorespiratory (tightness in chest, coughing, diffuse chest pain, hemoptysis, angina, palpitation, total pneumothorax) 8 (7%) 3 (2%)
Total number of patients with one or more adverse events 29 43
* A given patient may have experienced ≥ 1 adverse event.
† Isoniazid, rifampin and pyrazinamide dosed as separate tablets and capsules.
‡ A total of 250 patients (124 RIFATER; 126 separate) were originally enrolled in the study. Five patients (2 RIFATER; 3 separate) were excluded due to admission errors.

No serious adverse events were reported in the patients receiving RIFATER tablets. Three serious adverse events were reported in the patients given isoniazid, rifampin, and pyrazinamide as separate tablets and capsules. The three serious adverse events were two general hypersensitivity reactions and one jaundice reaction.

There were no significant differences between the two treatment groups in standard liver function, renal function and hematological laboratory test values measured at baseline and after 8 weeks of treatment. As would be expected for these drugs, there were alterations in liver enzymes (SGOT, SGPT) and serum uric acid levels. The adverse reactions reported during therapy with RIFATER are consistent with those described below for the individual components.

Adverse Reactions Reported for Individual Components

Rifampin

Gastrointestinal: Heartburn, epigastric distress, anorexia, nausea, vomiting, jaundice, flatulence, cramps, and diarrhea have been noted in some patients. Although Clostridium difficile has been shown in vitro to be sensitive to rifampin, pseudomembranous colitis has been reported with the use of rifampin (and other broad spectrum antibiotics). Therefore, it is important to consider this diagnosis in patients who develop diarrhea in association with antibiotic use.

Hepatic: Transient abnormalities in liver function tests (e.g., elevations in serum bilirubin, alkaline phosphatase, serum transaminases) have been observed. Rarely, hepatitis or a shocklike syndrome with hepatic involvement and abnormal liver function tests has been reported.

Hematologic: Thrombocytopenia has occurred primarily with high dose intermittent therapy, but has also been noted after resumption of interrupted treatment. It rarely occurs during well-supervised daily therapy. This effect is reversible if the drug is discontinued as soon as purpura occurs. Cerebral hemorrhage and fatalities have been reported when rifampin administration has been continued or resumed after the appearance of purpura.

Rare reports of disseminated intravascular coagulation have been observed.

Leukopenia, hemolytic anemia, and decreased hemoglobin have been observed.

Agranulocytosis has been reported rarely.

Central Nervous System: Headache, fever, drowsiness, fatigue, ataxia, dizziness, inability to concentrate, mental confusion, behavioral changes, muscular weakness, pains in extremities, and generalized numbness have been observed.

Psychoses have been rarely reported.

Rare reports of myopathy have also been observed.

Ocular: Visual disturbances have been observed.

Endocrine: Menstrual disturbances have been observed.

Rare reports of adrenal insufficiency in patients with compromised adrenal function have been observed.

Renal: Elevations in BUN and serum uric acid have been reported. Rarely, hemolysis, hemoglobinuria, hematuria, interstitial nephritis, acute tubular necrosis, renal insufficiency, and acute renal failure have been noted. These are generally considered to be hypersensitivity reactions. They usually occur during intermittent therapy or when treatment is resumed following intentional or accidental interruption of a daily dosage regimen, and are reversible when rifampin is discontinued and appropriate therapy instituted.

Dermatologic: Cutaneous reactions are mild and self-limiting and do not appear to be hypersensitivity reactions. Typically, they consist of flushing and itching with or without a rash. More serious cutaneous reactions which may be due to hypersensitivity occur but are uncommon.

Hypersensitivity Reactions: Occasionally pruritus, urticaria, rash, pemphigoid reaction, erythema multiforme including Stevens-Johnson Syndrome, toxic epidermal necrolysis, vasculitis, eosinophilia, sore mouth, sore tongue and conjunctivitis have been observed.

Anaphylaxis has been reported rarely.

Miscellaneous: Edema of the face and extremities have been reported. Other reactions which have occurred with intermittent dosage regimens include “flu” syndrome (such as episodes of fever, chills, headache, dizziness, and bone pain), shortness of breath, wheezing, decrease in blood pressure and shock. The “flu” syndrome may also appear if rifampin is taken irregularly by the patient or if daily administration is resumed after a drug free interval.

Isoniazid

The most frequent reactions are those affecting the nervous system and the liver. (See the BOXED WARNING)

Nervous System: Peripheral neuropathy is the most common toxic effect. It is dose-related, occurs most often in the malnourished and in those predisposed to neuritis (e.g., alcoholics and diabetics), and is usually preceded by paresthesia of the feet and hands. The incidence is higher in “slow inactivators.”

Other neurotoxic effects, which are uncommon with conventional doses, are convulsions, toxic encephalopathy, optic neuritis and atrophy, memory impairment, and toxic psychosis.

Gastrointestinal: Pancreatitis, nausea, vomiting, and epigastric distress.

Hepatic: Elevated serum transaminases (SGOT, SGPT), bilirubinemia, bilirubinuria, jaundice, and occasionally severe and sometimes fatal hepatitis. The common prodromal symptoms are anorexia, nausea, vomiting, fatigue, malaise, and weakness. Mild and transient elevation of serum transaminase levels occurs in 10 to 20% of persons taking isoniazid. The abnormality usually occurs in the first 4 to 6 months of treatment but can occur at any time during therapy. In most instances, enzyme levels return to normal with no necessity to discontinue medication. In occasional instances, progressive liver damage occurs, with accompanying symptoms. In these cases, the drug should be discontinued immediately. The frequency of progressive liver damage increases with age. It is rare in persons under 20, but occurs in up to 2.3% of those over 50 years of age.

Hematologic: Agranulocytosis; hemolytic, sideroblastic, or aplastic anemia; thrombocytopenia; and eosinophilia.

Hypersensitivity Reactions: Fever, skin eruptions (morbilliform, maculopapular, purpuric, or exfoliative), lymphadenopathy, anaphylactic reactions, Stevens-Johnson syndrome, and vasculitis.

Metabolic and Endocrine: Pyridoxine deficiency, pellagra, hyperglycemia, metabolic acidosis, and gynecomastia.

Miscellaneous: Rheumatic syndrome and systemic lupus erythematosus-like syndrome.

Pyrazinamide

The principal adverse effect is a hepatic reaction (See WARNINGS). Hepatotoxicity appears to be dose related and may appear at any time during therapy. Pyrazinamide can cause hyperuricemia and gout (See PRECAUTIONS).

Gastrointestinal: GI disturbances including nausea, vomiting, and anorexia have also been reported.

Hematologic and Lymphatic: Thrombocytopenia and sideroblastic anemia with erythroid hyperplasia, vacuolation of erythrocytes and increased serum concentration have occurred rarely with this drug. Adverse effects on blood clotting mechanisms have also been rarely reported.

Other: Mild arthralgia and myalgia have been reported frequently. Hypersensitivity reactions including rashes, urticaria, pruritus, and erythema have been reported. Angioedema has been reported rarely. Fever, acne, photosensitivity, porphyria, dysuria, and interstitial nephritis have been reported rarely.

Read the Rifater (rifampin, isoniazid and pyrazinamide) Side Effects Center for a complete guide to possible side effects

DRUG INTERACTIONS

Rifampin

Healthy subjects who received rifampin 600 mg once daily concomitantly with saquinavir 1000 mg/ritonavir 100 mg twice daily (ritonavir-boosted saquinavir) developed severe hepatocellular toxicity. Therefore, concomitant use of these medications is contraindicated. (See CONTRAINDICATIONS.)

Enzyme Induction: Rifampin is known to induce certain cytochrome P-450 enzymes. Coadministration of RIFATER, because it contains rifampin, with drugs that undergo biotransformation through these metabolic pathways may accelerate elimination. To maintain optimum therapeutic blood levels, dosages of drugs metabolized by these enzymes may require adjustment when starting or stopping concomitantly administered rifampin.

Rifampin has been reported to substantially decrease the plasma concentrations of the following antiviral drugs: atazanavir, darunavir, fosamprenavir, saquinavir, and tipranavir. These antiviral drugs must not be co-administered with rifampin. (See CONTRAINDICATIONS.)

Rifampin has been reported to accelerate the metabolism of the following drugs: anticonvulsants (e.g., phenytoin), digitoxin, antiarrhythmics (e.g., disopyramide, mexiletine, quinidine, tocainide), oral anticoagulants, antifungals (e.g., fluconazole, itraconazole, ketoconazole), barbiturates, beta-blockers, calcium channel blockers (e.g., diltiazem, nifedipine, verapamil), chloramphenicol, clarithromycin, fluoroquinolones (e.g., ciprofloxacin), corticosteroids, cyclosporine, cardiac glycoside preparations, clofibrate, oral or other systemic hormonal contraceptives, dapsone, diazepam, doxycycline, haloperidol, oral hypoglycemic agents (sulfonylureas), levothyroxine, methadone, narcotic analgesics, progestins, quinine, tacrolimus, theophylline, tricyclic antidepressants (e.g., amitriptyline, nortriptyline), and zidovudine. It may be necessary to adjust dosages of these drugs if they are given concurrently with RIFATER since it contains rifampin.

Patients using oral or other systemic hormonal contraceptives should be advised to change to nonhormonal methods of birth control during rifampin therapy.

Rifampin has been observed to increase the requirements for anticoagulant drugs of the coumarin type. In patients receiving anticoagulants and RIFATER concurrently, it is recommended that the prothrombin time be performed daily or as frequently as necessary to establish and maintain the required dose of anticoagulant.

When the two drugs were taken concomitantly, decreased concentrations of atovaquone and increased concentrations of rifampin were observed.

Concurrent use of ketoconazole and rifampin has resulted in decreased serum concentration of both drugs. Concurrent use of rifampin and enalapril has resulted in decreased concentrations of enalaprilat, the active metabolite of enalapril. Since RIFATER contains rifampin, dosage adjustments should be made if RIFATER is concurrently administered with ketoconazole or enalapril if indicated by the patient's clinical condition.

Other Interactions

Concomitant antacid administration may reduce the absorption of rifampin. Daily doses of RIFATER, because it contains rifampin, should be given at least 1 hour before the ingestion of antacids.

Probenecid and cotrimoxazole have been reported to increase the blood level of rifampin.

When rifampin is given concomitantly with either halothane or isoniazid the potential for hepatotoxicity is increased. The concomitant use of RIFATER, because it contains both rifampin and isoniazid, and halothane should be avoided. Patients receiving both rifampin and isoniazid as in RIFATER should be monitored closely for hepatotoxicity. (See the BOXED WARNING)

Plasma concentrations of sulfapyridine may be reduced following the concomitant administration of sulfasalazine and RIFATER, because it contains rifampin. This finding may be the result of alteration in the colonic bacteria responsible for the reduction of sulfasalazine to sulfapyridine and mesalamine.

Isoniazid

Enzyme Inhibition: Isoniazid is known to inhibit certain cytochrome P-450 enzymes. Coadministration of isoniazid with drugs that undergo biotransformation through these metabolic pathways may decrease elimination. Consequently, dosages of drugs metabolized by these enzymes may require adjustment when starting or stopping concomitantly administered RIFATER, because it contains isoniazid, to maintain optimum therapeutic blood levels.

Isoniazid has been reported to inhibit the metabolism of the following drugs: anticonvulsants (e.g., carbamazepine, phenytoin, primidone, valproic acid), benzodiazepines (e.g., diazepam), haloperidol, ketoconazole, theophylline, and warfarin. It may be necessary to adjust the dosages of these drugs if they are given concurrently with RIFATER because it contains isoniazid. The impact of the competing effects of rifampin and isoniazid on the metabolism of these drugs is unknown.

Other Interactions

Concomitant antacid administration may reduce the absorption of isoniazid. Ingestion with food may also reduce the absorption of isoniazid. Daily doses of RIFATER, because it contains isoniazid, should be given on an empty stomach at least 1 hour before the ingestion of antacids or food.

Corticosteroids (e.g., prednisolone) may decrease the serum concentration of isoniazid by increasing acetylation rate and/or renal clearance. Para-aminosalicylic acid may increase the plasma concentration and elimination half-life of isoniazid by competition of acetylating enzymes.

Pharmacodynamic Interactions

Daily ingestion of alcohol may be associated with a higher incidence of isoniazid hepatitis. Isoniazid, when given concomitantly with rifampin, has been reported to increase the hepatotoxicity of both drugs. Patients receiving both rifampin and isoniazid as in RIFATER should be monitored closely for hepatotoxicity.

The CNS effects of meperidine (drowsiness), cycloserine (dizziness, drowsiness), and disulfiram (acute behavioral and coordination changes) may be exaggerated when concomitant RIFATER, because it contains isoniazid, is given. Concurrent RIFATER, because it contains isoniazid, and levodopa administration may produce symptoms of excess catecholamine stimulation (agitation, flushing, palpitations) or lack of levodopa effect.

Isoniazid may produce hyperglycemia and lead to loss of glucose control in patients on oral hypoglycemics.

Fast acetylation of isoniazid may produce high concentrations of hydrazine that facilitate deflorination of enflurane. Renal function should be monitored in patients receiving both RIFATER and enflurane.

Food Interactions

Because isoniazid has some monoamine oxidase inhibiting activity, an interaction with tyramine-containing foods (cheese, red wine) may occur. Diamine oxidase may also be inhibited, causing exaggerated response (e.g., headache, sweating, palpitations, flushing, hypotension) to foods containing histamine (e.g., skipjack, tuna, other tropical fish). Tyramine- and histamine-containing foods should be avoided by patients receiving RIFATER.

Drug/Laboratory Test Interactions

Rifampin

Cross-reactivity and false-positive urine screening tests for opiates have been reported in patients receiving rifampin when using the KIMS (Kinetic Interaction of Microparticles in Solution) method (e.g., Abuscreen OnLine opiates assay; Roche Diagnostic Systems). Confirmatory tests, such as gas chromatography/mass spectrometry, will distinguish rifampin from opiates.

Therapeutic levels of rifampin have been shown to inhibit standard microbiological assays for serum folate and vitamin B12. Therefore, alternative assay methods should be considered. Transient abnormalities in liver function tests (e.g., elevation in serum bilirubin, alkaline phosphatase and serum transaminases), and reduced biliary excretion of contrast media used for visualization of the gallbladder have also been observed. Therefore, these tests should be performed before the morning dose of RIFATER.

Rifampin and isoniazid have been reported to alter vitamin D metabolism. In some cases, reduced levels of circulating 25-hydroxy vitamin D and 1,25-dihydroxy vitamin D have been accompanied by reduced serum calcium and phosphate, and elevated parathyroid hormone.

Pyrazinamide

Pyrazinamide has been reported to interfere with ACETEST® and KETOSTIX® urine tests to produce a pink-brown color.

Read the Rifater Drug Interactions Center for a complete guide to possible interactions

Last reviewed on RxList: 3/18/2013
This monograph has been modified to include the generic and brand name in many instances.

A A A

Report Problems to the Food and Drug Administration

 

You are encouraged to report negative side effects of prescription drugs to the FDA. Visit the FDA MedWatch website or call 1-800-FDA-1088.


Women's Health

Find out what women really need.