Recommended Topic Related To:

Soma Compound with Codeine

"For what conditions are pain medications used?

Virtually any disease as well as most injuries and surgical procedures involve some degree of pain. It's not surprising, then, that pain medications, also known as analgesics, are among t"...

Soma Compound with Codeine

Soma Compound with Codeine

CLINICAL PHARMACOLOGY

Mechanism of Action

Carisoprodol

The mechanism of action of carisoprodol in relieving discomfort associated with acute painful musculoskeletal conditions has not been clearly identified. In animal studies, muscle relaxation induced by carisoprodol is associated with altered interneuronal activity in the spinal cord and in the descending reticular formation of the brain.

Aspirin

The mechanism of action of aspirin in relieving pain is by inhibition of the body's production of prostaglandins, which are thought to cause pain sensations by stimulating muscle contractions and dilating blood vessels.

Codeine Phosphate

The precise mechanism of action of codeine phosphate, an opioid agonist, in relieving pain has not been established. The binding of codeine phosphate to mu, delta, and kappa opioid receptors in the central nervous system (CNS) may change the perception of pain. The analgesic activity of codeine phosphate is probably due to its conversion to morphine.

Pharmacodynamics

Carisoprodol

Carisoprodol is a centrally-acting muscle relaxant that does not directly relax tense skeletal muscles. A metabolite of carisoprodol, meprobamate, has anxiolytic and sedative properties. The degree to which these properties of meprobamate contribute to the safety and efficacy of Soma Compound with Codeine is unknown.

Aspirin

Aspirin is a non-narcotic analgesic with anti-inflammatory and anti-pyretic activity. Inhibition of prostaglandin biosynthesis appears to account for most of its antiinflammatory and for at least part of its analgesic and antipyretic properties. In the CNS, aspirin works on the hypothalamus heat-regulating center to reduce fever. Aspirin can cause serious gastrointestinal injury including bleeding, obstruction, and perforations from ulcers possibly by inhibition of the production of prostaglandins, compromising the defenses of the gastric mucosa and the activity of substances involved in tissue repair and ulcer healing (see WARNINGS). Aspirin inhibits platelet aggregation by irreversibly inhibiting prostaglandin cyclo-oxygenase. This effect lasts for the life of the platelet and prevents the formation of the platelet aggregating factor thromboxane A2.

Codeine Phosphate

Codeine phosphate is a centrally-acting narcotic analgesic. Its actions are qualitatively similar to morphine, but its potency is substantially less. Opioids, including codeine phosphate have the following effects:

  • respiratory depression by a direct effect on the brainstem respiratory centers
  • depression of the cough reflex by direct effect on the cough center in the medulla
  • constriction of the pupils (i.e., miosis)
  • decreased gastric, biliary, and pancreatic secretions
  • reduction in the motility of the stomach and small and large intestine which results in constipation and delayed digestion
  • nausea and vomiting by directly stimulating the chemoreceptor trigger zone
  • increased biliary tract pressure as a result of spasm of the sphincter of Oddi
  • peripheral vasodilatation which may result in orthostatic hypotension
  • histamine release which may result in pruritus, flushing, and sweating
  • increased tone of the bladder detrusor muscle, ureters, and vesical sphincter which may result in urinary retention

Pharmacokinetics

Carisoprodol

The pharmacokinetics of carisoprodol and its metabolite meprobamate were studied in a study of 24 healthy subjects (12 male and 12 female) who received single doses of 350 mg of carisoprodol (see Table 1). The Cmax of meprobamate was 2.5 ± 0.5 μg/mL (mean ± SD) after administration of a single 350 mg dose of carisoprodol, which is approximately 30% of the Cmax of meprobamate (approximately 8 μg/mL) after administration of a single 400 mg dose of meprobamate.

Table 1: Pharmacokinetic Parameters of Carisoprodol and Meprobamate (Mean ± SD, n=24)

  Carisoprodol Meprobamate
Cmax (μg/mL) 1.8 ± 1.0 2.5 ± 0.5
AUCinf (μg•hour/mL) 7.0 ± 5.0 46 ± 9.0
Tmax (hour) 1.7 ± 0.8 4.5 ± 1.9
T½ (hour) 2.0 ± 0.5 9.6 ± 1.5

Absorption: Absolute bioavailability of carisoprodol has not been determined. After administration of a single dose of 350 mg of carisoprodol, the mean time to peak plasma concentrations (Tmax) of carisoprodol was approximately 1.5 to 2 hours. Coadministration of a high-fat meal with 350 mg of carisoprodol had no effect on the pharmacokinetics of carisoprodol.

Metabolism: The major pathway of carisoprodol metabolism is via the liver by cytochrome enzyme CYP2C19 to form meprobamate. This enzyme exhibits genetic polymorphism (see Patients with Reduced CYP2C19 Activity below).

Elimination: Carisoprodol is eliminated by both renal and non-renal routes with a terminal elimination half-life of approximately 2 hours after administration of a single dose of 350 mg of carisoprodol. The half-life of meprobamate is approximately 10 hours after administration of a single dose of 350 mg of carisoprodol.

Gender: Exposure of carisoprodol is higher in females than in male subjects (approximately 30 to 50% on a weight adjusted basis). Overall exposure of meprobamate is comparable between female and male subjects.

Patients with Reduced CYP2C19 Activity: Carisoprodol should be used with caution in patients with reduced CYP2C19 activity. Published studies indicate that patients who are poor CYP2C19 metabolizers have a 4-fold increase in exposure to carisoprodol, and 50% reduced exposure to meprobamate compared to normal CYP2C19 metabolizers. The prevalence of poor metabolizers in Caucasians and African Americans is approximately 3 to 5% and in Asians is approximately 15 to 20%.

Aspirin

Absorption: The rate of aspirin absorption from the gastrointestinal (GI) tract is dependent upon the presence or absence of food, gastric pH (the presence of absence of GI antacids), and other physiologic factors. Following absorption, aspirin is hydrolyzed to salicylic acid in the gut wall and during first-pass metabolism with peak plasma levels of salicylic acid occurring within 1 to 2 hours of dosing.

Distribution: Salicylic acid is widely distributed to all tissues and fluids in the body including the central nervous system (CNS), breast milk, and fetal tissues. The highest concentrations are found in the plasma, liver, kidneys, heart, and lungs. The protein binding of salicylate is concentration dependent, i.e., nonlinear. At plasma concentrations of salicylic acid, < 100 μg/mL and > 400 μg/mL, approximately 90 and 76 percent of plasma salicylate is bound to albumin, respectively.

Metabolism: Aspirin, which has a half-life of about 15 minutes, is hydrolyzed in the plasma to salicylic acid such that plasma levels of aspirin may not be detectable 1 to 2 hours after dosing. Salicylic acid, which has a plasma half-life of approximately 6 hours, is conjugated in the liver to form salicyluric acid, salicyl phenolic glucuronide, salicyl acyl glucuronide, gentisic acid, and gentisuric acid. At higher serum concentrations of salicylic acid, the total clearance of salicylic acid decreases due to the limited ability of the liver to form both salicyluric acid and phenolic glucuronide. Following toxic doses of aspirin (e.g., > 10 grams), the plasma half-life of salicylic acid may be increased to over 20 hours.

Elimination: The elimination of salicylic acid is constant in relation to the plasma salicylic acid concentration. Following therapeutic doses of aspirin, approximately 75, 10, 10, and 5 percent is found excreted in the urine as salicyluric acid, salicylic acid, a phenolic glucuronide of salicylic acid, and an acyl glucuronide of salicylic acid, respectively. As the urinary pH rises above 6.5, the renal clearance of free salicylate increases from less than 5 percent to greater than 80 percent. Alkalinization of the urine is a key concept in the management of salicylate overdose (see OVERDOSAGE, Treatment of Overdosage). Clearance of salicylic acid is also reduced in patients with renal impairment.

Codeine Phosphate

Absorption: Codeine is readily absorbed from the GI tract. At therapeutic doses, the analgesic effect reaches a peak within 2 hours and persists between 4 and 6 hours.

Distribution: Codeine is rapidly distributed from the intravascular spaces to the tissues with preferential uptake by the liver, spleen, and kidney. Codeine crosses the blood-brain barrier, and is found in fetal tissue and breast milk. The plasma concentration of codeine does not correlate with brain concentration of codeine or the relief of pain.

Metabolism: The plasma half-life of codeine is about 2.9 hours.

Elimination: The elimination of codeine is primarily via the kidneys, and about 90% of an oral dose is excreted by the kidneys within 24 hours of dosing. The urinary secretion products consist of free and glucuronide-conjugated codeine (about 70%), free and conjugated norcodeine (about 10%), free and conjugated morphine (about 10%), normorphine (4%), and hydrocodone (1%). The remainder of the dose is excreted in the feces.

Last reviewed on RxList: 12/4/2009
This monograph has been modified to include the generic and brand name in many instances.

A A A

Report Problems to the Food and Drug Administration

 

You are encouraged to report negative side effects of prescription drugs to the FDA. Visit the FDA MedWatch website or call 1-800-FDA-1088.


Chronic Pain/Back Pain

Find tips and advances in treatment.

Related Drugs
advertisement
advertisement
Use Pill Finder Find it Now See Interactions

Pill Identifier on RxList

  • quick, easy,
    pill identification

Find a Local Pharmacy

  • including 24 hour, pharmacies

Interaction Checker

  • Check potential drug interactions
Search the Medical Dictionary for Health Definitions & Medical Abbreviations