Recommended Topic Related To:

Sonata

"Sleep disorder drugs (hypnotic and sedative drugs) overview

Insomnia, a disorder in which there is difficulty sleeping, occurs occasionally in most people but usually lasts only a few days. The body then "corrects" itself "...

Sonata

SIDE EFFECTS

The premarketing development program for Sonata (zaleplon) included zaleplon exposures in patients and/or normal subjects from 2 different groups of studies: approximately 900 normal subjects in clinical pharmacology/pharmacokinetic studies; and approximately 2,900 exposures from patients in placebo-controlled clinical effectiveness studies, corresponding to approximately 450 patient exposure years. The conditions and duration of treatment with Sonata (zaleplon) varied greatly and included (in overlapping categories) open-label and double- blind phases of studies, inpatients and outpatients, and short-term or longer-term exposure. Adverse reactions were assessed by collecting adverse events, results of physical examinations, vital signs, weights, laboratory analyses, and ECGs.

Adverse events during exposure were obtained primarily by general inquiry and recorded by clinical investigators using terminology of their own choosing. Consequently, it is not possible to provide a meaningful estimate of the proportion of individuals experiencing adverse events without first grouping similar types of events into a smaller number of standardized event categories. In the tables and tabulations that follow, COSTART terminology has been used to classify reported adverse events.

The stated frequencies of adverse events represent the proportion of individuals who experienced, at least once, a treatment-emergent adverse event of the type listed. An event was considered treatment-emergent if it occurred for the first time or worsened while receiving therapy following baseline evaluation.

Adverse Findings Observed in Short-Term, Placebo-Controlled Trials

Adverse Events Associated With Discontinuation of Treatment

In premarketing placebo-controlled, parallel-group phase 2 and phase 3 clinical trials, 3.1% of 744 patients who received placebo and 3.7% of 2,149 patients who received Sonata (zaleplon) discontinued treatment because of an adverse clinical event. This difference was not statistically significant. No event that resulted in discontinuation occurred at a rate of ≥ 1%.

Adverse Events Occurring at an Incidence of 1% or More Among Sonata (zaleplon) 20 mg-Treated Patients

Table 1 enumerates the incidence of treatment-emergent adverse events for a pool of three 28-night and one 35- night placebo-controlled studies of Sonata (zaleplon) at doses of 5 mg or 10 mg and 20 mg. The table includes only those events that occurred in 1% or more of patients treated with Sonata (zaleplon) 20 mg and that had a higher incidence in patients treated with Sonata (zaleplon) 20 mg than in placebo-treated patients.

The prescriber should be aware that these figures cannot be used to predict the incidence of adverse events in the course of usual medical practice where patient characteristics and other factors differ from those which prevailed in the clinical trials. Similarly, the cited frequencies cannot be compared with figures obtained from other clinical investigations involving different treatments, uses, and investigators. The cited figures, however, do provide the prescribing physician with some basis for estimating the relative contribution of drug and non-drug factors to the adverse event incidence rate in the population studied.

Table 1
Incidence (%) of Treatment-Emergent Adverse Events in Long-Term (28 and 35 Nights) Placebo- Controlled Clinical Trials of Sonata (zaleplon) 1

Body System
Preferred Term
Placebo
(n = 344)
Sonata 5 mg or 10 mg
(n = 569)
Sonata 20 mg
(n = 297)
Body as a whole
Abdominal pain 3 6 6
Asthenia 5 5 7
Headache 35 30 42
Malaise <1 <1 2
Photosensitivity reaction <1 <1 1
Digestive system
Anorexia <1 <1 2
Colitis 0 0 1
Nausea 7 6 8
Metabolic and nutritional
Peripheral edema <1 <1 1
Nervous system
Amnesia 1 2 4
Confusion <1 <1 1
Depersonalization <1 <1 2
Dizziness 7 7 9
Hallucinations <1 <1 1
Hypertonia <1 1 1
Hypesthesia <1 <1 2
Paresthesia 1 3 3
Somnolence 4 5 6
Tremor 1 2 2
Vertigo <1 <1 1
Respiratory system
Epistaxis <1 <1 1
Special senses
Abnormal vision <1 <1 2
Ear pain 0 <1 1
Eye pain 2 4 3
Hyperacusis <1 1 2
Parosmia <1 <1 2
Urogenital system
Dysmenorrhea 2 3 4
1: Events for which the incidence for Sonata 20 mg-treated patients was at least 1% and greater than the incidence among placebo-treated patients. Incidence greater than 1% has been rounded to the nearest whole number.

Other Adverse Events Observed During the Premarketing Evaluation of Sonata (zaleplon)

Listed below are COSTART terms that reflect treatment-emergent adverse events as defined in the introduction to the ADVERSE REACTIONS section. These events were reported by patients treated with Sonata (zaleplon) at doses in a range of 5 mg/day to 20 mg/day during premarketing phase 2 and phase 3 clinical trials throughout the United States, Canada, and Europe, including approximately 2,900 patients. All reported events are included except those already listed in Table 1 or elsewhere in labeling, those events for which a drug cause was remote, and those event terms that were so general as to be uninformative. It is important to emphasize that although the events reported occurred during treatment with Sonata (zaleplon) , they were not necessarily caused by it.

Events are further categorized by body system and listed in order of decreasing frequency according to the following definitions: frequent adverse events are those occurring on one or more occasions in at least 1/100 patients; infrequent adverse events are those occurring in less than 1/100 patients but at least 1/1,000 patients; rare events are those occurring in fewer than 1/1,000 patients.

Body as a whole - Frequent: back pain, chest pain, fever; Infrequent: chest pain substernal, chills, face edema, generalized edema, hangover effect, neck rigidity.

Cardiovascular system - Frequent: migraine; Infrequent: angina pectoris, bundle branch block, hypertension, hypotension, palpitation, syncope, tachycardia, vasodilatation, ventricular extrasystoles; Rare: bigeminy, cerebral ischemia, cyanosis, pericardial effusion, postural hypotension, pulmonary embolus, sinus bradycardia, thrombophlebitis, ventricular tachycardia.

Digestive system - Frequent: constipation, dry mouth, dyspepsia; Infrequent: eructation, esophagitis, flatulence, gastritis, gastroenteritis, gingivitis, glossitis, increased appetite, melena, mouth ulceration, rectal hemorrhage, stomatitis; Rare: aphthous stomatitis, biliary pain, bruxism, cardiospasm, cheilitis, cholelithiasis, duodenal ulcer, dysphagia, enteritis, gum hemorrhage, increased salivation, intestinal obstruction, abnormal liver function tests, peptic ulcer, tongue discoloration, tongue edema, ulcerative stomatitis.

Endocrine system - Rare: diabetes mellitus, goiter, hypothyroidism.

Hemic and lymphatic system - Infrequent: anemia, ecchymosis, lymphadenopathy; Rare: eosinophilia, leukocytosis, lymphocytosis, purpura.

Metabolic and nutritional - Infrequent: edema, gout, hypercholesteremia, thirst, weight gain; Rare: bilirubinemia, hyperglycemia, hyperuricemia, hypoglycemia, hypoglycemic reaction, ketosis, lactose intolerance, AST (SGOT) increased, ALT (SGPT) increased, weight loss.

Musculoskeletal system - Frequent: arthralgia, arthritis, myalgia; Infrequent: arthrosis, bursitis, joint disorder (mainly swelling, stiffness, and pain), myasthenia, tenosynovitis; Rare: myositis, osteoporosis.

Nervous system - Frequent: anxiety, depression, nervousness, thinking abnormal (mainly difficulty concentrating); Infrequent: abnormal gait, agitation, apathy, ataxia, circumoral paresthesia, emotional lability, euphoria, hyperesthesia, hyperkinesia, hypotonia, incoordination, insomnia, libido decreased, neuralgia, nystagmus; Rare: CNS stimulation, delusions, dysarthria, dystonia, facial paralysis, hostility, hypokinesia, myoclonus, neuropathy, psychomotor retardation, ptosis, reflexes decreased, reflexes increased, sleep talking, sleep walking, slurred speech, stupor, trismus.

Respiratory system - Frequent: bronchitis; Infrequent: asthma, dyspnea, laryngitis, pneumonia, snoring, voice alteration; Rare: apnea, hiccup, hyperventilation, pleural effusion, sputum increased.

Skin and appendages - Frequent: pruritus, rash; Infrequent: acne, alopecia, contact dermatitis, dry skin, eczema, maculopapular rash, skin hypertrophy, sweating, urticaria, vesiculobullous rash; Rare: melanosis, psoriasis, pustular rash, skin discoloration.

Special senses - Frequent: conjunctivitis, taste perversion; Infrequent: diplopia, dry eyes, photophobia, tinnitus, watery eyes; Rare: abnormality of accommodation, blepharitis, cataract specified, corneal erosion, deafness, eye hemorrhage, glaucoma, labyrinthitis, retinal detachment, taste loss, visual field defect.

Urogenital system - Infrequent: bladder pain, breast pain, cystitis, decreased urine stream, dysuria, hematuria, impotence, kidney calculus, kidney pain, menorrhagia, metrorrhagia, urinary frequency, urinary incontinence, urinary urgency, vaginitis; Rare: albuminuria, delayed menstrual period, leukorrhea, menopause, urethritis, urinary retention, vaginal hemorrhage.

Postmarketing Reports

Anaphylactic/anaphylactoid reactions, including severe reactions.

Drug Abuse And Dependence

Controlled Substance Class

Sonata (zaleplon) is classified as a Schedule IV controlled substance by federal regulation.

Abuse, Dependence, and Tolerance

Abuse and addiction are separate and distinct from physical dependence and tolerance. Abuse is characterized by misuse of the drug for non-medical purposes, often in combination with other psychoactive substances. Physical dependence is a state of adaption that is manifested by a specific withdrawal syndrome that can be produced by abrupt cessation, rapid dose reduction, decreasing blood level of the drug and/or administration of an antagonist. Tolerance is a state of adaptation in which exposure to a drug induces changes that result in a diminution of one or more of the drug's effects over time. Tolerance may occur to both the desired and undesired effects of drugs and may develop at different rates for different effects.

Addiction is a primary, chronic, neurobiological disease with genetic, psychosocial, and environmental factors influencing its development and manifestations. It is characterized by behaviors that include one or more of the following: impaired control over drug use, compulsive use, continued use despite harm, and craving. Drug addiction is a treatable disease, utilizing a multidisciplinary approach, but relapse is common.

Abuse

Two studies assessed the abuse liability of Sonata (zaleplon) at doses of 25 mg, 50 mg, and 75 mg in subjects with known histories of sedative drug abuse. The results of these studies indicate that Sonata (zaleplon) has an abuse potential similar to benzodiazepine and benzodiazepine-like hypnotics.

Dependence

The potential for developing physical dependence on Sonata (zaleplon) and a subsequent withdrawal syndrome was assessed in controlled studies of 14-, 28-, and 35-night durations and in open-label studies of 6- and 12-month durations by examining for the emergence of rebound insomnia following drug discontinuation. Some patients (mostly those treated with 20 mg) experienced a mild rebound insomnia on the first night following withdrawal that appeared to be resolved by the second night. The use of the Benzodiazepine Withdrawal Symptom Questionnaire and examination of any other withdrawal-emergent events did not detect any other evidence for a withdrawal syndrome following abrupt discontinuation of Sonata (zaleplon) therapy in pre-marketing studies.

However, available data cannot provide a reliable estimate of the incidence of dependence during treatment at recommended doses of Sonata (zaleplon) . Other sedative/hypnotics have been associated with various signs and symptoms following abrupt discontinuation, ranging from mild dysphoria and insomnia to a withdrawal syndrome that may include abdominal and muscle cramps, vomiting, sweating, tremors, and convulsions. Seizures have been observed in two patients, one of which had a prior seizure, in clinical trials with Sonata (zaleplon) . Seizures and death have been seen following the withdrawal of zaleplon from animals at doses many times higher than those proposed for human use. Because individuals with a history of addiction to, or abuse of, drugs or alcohol are at risk of habituation and dependence, they should be under careful surveillance when receiving Sonata (zaleplon) or any other hypnotic.

Tolerance

Possible tolerance to the hypnotic effects of Sonata (zaleplon) 10 mg and 20 mg was assessed by evaluating time to sleep onset for Sonata (zaleplon) compared with placebo in two 28-night placebo-controlled studies and latency to persistent sleep in one 35-night placebo-controlled study where tolerance was evaluated on nights 29 and 30. No development of tolerance to Sonata (zaleplon) was observed for time to sleep onset over 4 weeks.

Read the Sonata (zaleplon) Side Effects Center for a complete guide to possible side effects

DRUG INTERACTIONS

As with all drugs, the potential exists for interaction with other drugs by a variety of mechanisms.

CNS-Active Drugs

Ethanol: Sonata (zaleplon) 10 mg potentiated the CNS-impairing effects of ethanol 0.75 g/kg on balance testing and reaction time for 1 hour after ethanol administration and on the digit symbol substitution test (DSST), symbol copying test, and the variability component of the divided attention test for 2.5 hours after ethanol administration. The potentiation resulted from a CNS pharmacodynamic interaction; zaleplon did not affect the pharmacokinetics of ethanol.

Imipramine: Coadministration of single doses of Sonata (zaleplon) 20 mg and imipramine 75 mg produced additive effects on decreased alertness and impaired psychomotor performance for 2 to 4 hours after administration. The interaction was pharmacodynamic with no alteration of the pharmacokinetics of either drug.

Paroxetine: Coadministration of a single dose of Sonata (zaleplon) 20 mg and paroxetine 20 mg daily for 7 days did not produce any interaction on psychomotor performance. Additionally, paroxetine did not alter the pharmacokinetics of Sonata (zaleplon) , reflecting the absence of a role of CYP2D6 in zaleplon's metabolism.

Thioridazine: Coadministration of single doses of Sonata (zaleplon) 20 mg and thioridazine 50 mg produced additive effects on decreased alertness and impaired psychomotor performance for 2 to 4 hours after administration. The interaction was pharmacodynamic with no alteration of the pharmacokinetics of either drug.

Venlafaxine: Coadministration of a single dose of zaleplon 10 mg and multiple doses of venlafaxine ER (extended release) 150 mg did not result in any significant changes in the pharmacokinetics of either zaleplon of venlafaxine. In addition, there was no pharmacodynamic interaction as a result of coadministration of zaleplon and venlafaxine ER.

Promethazine: Coadministration of a single dose of zaleplon and promethazine (10 and 25 mg, respectively) resulted in a 15% decrease in maximal plasma concentrations of zaleplon, but no change in the area under the plasma concentration-time curve. however, the pharmacodynamics of coadministration of zaleplon and promethazine have not been evaluated. Caution should be exercised when these 2 agents are coadministered.

Drugs That Induce CYP3A4

Rifampin: CYP3A4 is ordinarily a minor metabolizing enzyme of zaleplon. Multiple-dose administration of the potent CYP3A4 inducer rifampin (600 mg every 24 hours, q24h, for 14 days), however, reduced zaleplon Cmax and AUC by approximately 80%. The coadministration of a potent CYP3A4 enzyme inducer, although not posing a safety concern, thus could lead to ineffectiveness of zaleplon. An alternative non-CYP3A4 substrate hypnotic agent may be considered in patients taking CYP3A4 inducers such as rifampin, phenytoin, carbamazepine, and phenobarbital.

Drugs That Inhibit CYP3A4

CYP3A4 is a minor metabolic pathway for the elimination of zaleplon because the sum of desethylzaleplon (formed via CYP3A4 in vitro) and its metabolites, 5-oxo-desethylzaleplon and 5-oxo-desethylzaleplon glucuronide, account for only 9% of the urinary recovery of a zaleplon dose. Coadministration of single, oral doses of zaleplon with erythromycin (10 mg and 800 mg respectively), a strong, selective CYP3A4 inhibitor, produced a 34% increase in zaleplon's maximal plasma concentrations and a 20% increase in the area under the plasma concentration-time curve. The magnitude of interaction with multiple doses of erythromycin is unknown. Other strong selective CYP3A4 inhibitors such as ketoconazole can also be expected to increase the exposure of zaleplon. A routine dosage adjustment of zaleplon is not considered necessary.

Drugs That Inhibit Aldehyde Oxidase

The aldehyde oxidase enzyme system is less well studied than the cytochrome P450 enzyme system.

Diphenhydramine: Diphenhydramine is reported to be a weak inhibitor of aldehyde oxidase in rat liver, but its inhibitory effects in human liver are not known. There is no pharmacokinetic interaction between zaleplon and diphenhydramine following the administration of a single dose (10 mg and 50 mg, respectively) of each drug. However, because both of these compounds have CNS effects, an additive pharmacodynamic effect is possible.

Drugs That Inhibit Both Aldehyde Oxidase and CYP3A4

Cimetidine: Cimetidine inhibits both aldehyde oxidase (in vitro) and CYP3A4 (in vitro and in vivo), the primary and secondary enzymes, respectively, responsible for zaleplon metabolism. Concomitant administration of Sonata (zaleplon) (10 mg) and cimetidine (800 mg) produced an 85% increase in the mean Cmax and AUC of zaleplon. An initial dose of 5 mg should be given to patients who are concomitantly being treated with cimetidine (see DOSAGE AND ADMINISTRATION ).

Drugs Highly Bound to Plasma Protein

Zaleplon is not highly bound to plasma proteins (fraction bound 60%±15%); therefore, the disposition of zaleplon is not expected to be sensitive to alterations in protein binding. In addition, administration of Sonata (zaleplon) to a patient taking another drug that is highly protein bound should not cause transient increase in free concentrations of the other drug.

Drugs with a Narrow Therapeutic Index

Digoxin: Sonata (zaleplon) (10 mg) did not affect the pharmacokinetic or pharmacodynamic profile of digoxin (0.375 mg q24h for 8 days).

Warfarin: Multiple oral doses of Sonata (zaleplon) (20 mg q24h for 13 days) did not affect the pharmacokinetics of warfarin (R+)- or (S-)-enantiomers or the pharmacodynamics (prothrombin time) following a single 25-mg oral dose of warfarin.

Drugs That Alter Renal Excretion

Ibuprofen: Ibuprofen is known to affect renal function and, consequently, alter the renal excretion of other drugs. There was no apparent pharmacokinetic interaction between zaleplon and ibuprofen following single dose administration (10 mg and 600 mg, respectively) of each drug. This was expected because zaleplon is primarily metabolized and renal excretion of unchanged zaleplon accounts for less than 1% of the administered dose.

Read the Sonata Drug Interactions Center for a complete guide to possible interactions

Last reviewed on RxList: 1/2/2008
This monograph has been modified to include the generic and brand name in many instances.

A A A

Sonata - User Reviews

Sonata User Reviews

Now you can gain knowledge and insight about a drug treatment with Patient Discussions.

Here is a collection of user reviews for the medication Sonata sorted by most helpful. Patient Discussions FAQs

Report Problems to the Food and Drug Administration

 

You are encouraged to report negative side effects of prescription drugs to the FDA. Visit the FDA MedWatch website or call 1-800-FDA-1088.


Women's Health

Find out what women really need.


From WebMD