Recommended Topic Related To:

Trecator

"Alderman Farms Sales Corporation, Boynton Beach, Florida is recalling one pint containers of Certified Organic Cherry Tomatoes because they have the potential to be contaminated with Salmonella, an organism which can cause serious and some"...

Trecator

CLINICAL PHARMACOLOGY

Absorption

Ethionamide is essentially completely absorbed following oral administration and is not subjected to any appreciable first pass metabolism. Ethionamide tablets may be administered without regard to the timing of meals.

The pharmacokinetic parameters of ethionamide following single oral-dose administration of 250 mg of Trecator (ethionamide tablets) film-coated tablets under fasted conditions to 40 healthy adult volunteers are provided in Table 1.

Table 1: Mean (SD) Pharmacokinetic Parameters for Ethionamide Following Single-dose Administration of 250 mg Trecator (ethionamide tablets) Film-Coated Tablets to Healthy Adult Volunteers


  Cmax
(• g/mL)
Tmax
(hrs)
AUC
(• g•hr/mL)
Film-Coated Tablet 2.16
(0.61)
1.02
(0.55)
7.67
(1.69)

Trecator (ethionamide tablets) tablets have been reformulated from a sugar-coated tablet to a film-coated tablet. The Cmax for the film-coated tablets (2.16• g/mL) was significantly higher than that of sugar-coated tablets (1.48 • g/mL) (see DOSAGE AND ADMINISTRATION).

Distribution

Ethionamide is rapidly and widely distributed into body tissues and fluids following administration of a sugar-coated tablet, with concentrations in plasma and various organs being approximately equal. Significant concentrations are also present in cerebrospinal fluid following administration of a sugar-coated tablet. Distribution of ethionamide into the same body tissues and fluids, including cerebrospinal fluid following administration of the film-coated tablet, has not been studied, but is not expected to differ significantly from that of the sugar-coated tablet. The drug is approximately 30% bound to proteins. The mean (SD) apparent oral volume of distribution observed in 40 healthy volunteers following a 250 mg oral dose of film-coated tablets was 93.5 (19.2) L.

Metabolism

Ethionamide is extensively metabolized to active and inactive metabolites. Metabolism is presumed to occur in the liver and thus far 6 metabolites have been isolated: 2-ethylisonicotinamide, carbonyl-dihydropyridine, thiocarbonyl-dihydropyridine, S-oxocarbamoyl dihydropyridine, 2-ethylthioiso-nicotinamide, and ethionamide sulphoxide. The sulphoxide metabolite has been demonstrated to have antimicrobial activity against Mycobacterium tuberculosis.

Elimination

The mean (SD) half-life observed in 40 healthy volunteers following a 250 mg oral dose of film-coated tablets was 1.92 (0.27) hours. Less than 1% of the oral dose is excreted as ethionamide in urine.

Mechanism of Action

Ethionamide may be bacteriostatic or bactericidal in action, depending on the concentration of the drug attained at the site of infection and the susceptibility of the infecting organism. The exact mechanism of action of ethionamide has not been fully elucidated, but the drug appears to inhibit peptide synthesis in susceptible organisms.

Microbiology

In Vitro Activity

Ethionamide exhibits bacteriostatic activity against extracellular and intracellular Mycobacterium tuberculosis organisms. The development of ethionamide resistant M. tuberculosis isolates can be obtained by repeated subculturing in liquid or on solid media containing increasing concentrations of ethionamide. Multi-drug resistant strains of M tuberculosis may have acquired resistance to both isoniazid and ethionamide. However, the majority of M. tuberculosis isolates that are resistant to one are usually susceptible to the other. There is no evidence of cross-resistance between ethionamide and para-aminosalicylic acid (PAS), streptomycin, or cycloserine. However, limited data suggest that cross-resistance may exist between ethionamide and thiosemicarbazones (i.e., thiacetazone) as well as isoniazid.

In Vivo Activity

Ethionamide administered orally initially decreased the number of culturable Mycobacterium tuberculosis organisms from the lungs of H37Rv infected mice. Drug resistance developed with continued ethionamide monotherapy, but did not occur when mice received ethionamide in combination with streptomycin or isoniazid.

SUSCEPTIBILITY TESTING

Ethionamide susceptibility testing should only be performed by qualified or reference laboratories.

Two standardized in vitro susceptibility methods are available for testing ethionamide against M. tuberculosis organisms. The modified proportion method (CDC or NCCLS M24-P) utilizes Middlebrook and Cohn 7H10 agar medium impregnated with ethionamide at a final concentration of 5.0 • g/mL. After 2 to 3 weeks of incubation, MIC99 values are calculated by comparing the quantity of organisms growing in the medium containing drug to the control cultures. Mycobacterial growth in the presence of drug, of at least 1% of the growth in the control culture, indicates resistance.

The radiometric broth method employs the BACTEC 460 machine to compare the growth index from untreated control cultures to cultures grown in the presence of 5.0 • g/mL of ethionamide. Strict adherence to the manufacturer's instructions for sample processing and data interpretation is required for this assay.

Susceptibility test results obtained by these two different methods cannot be compared unless equivalent drug concentrations are evaluated.

The clinical relevance of in vitro susceptibility test results for mycobacterial species other than M. tuberculosis using either the radiometric or the proportion method has not been determined.

Last reviewed on RxList: 6/15/2007
This monograph has been modified to include the generic and brand name in many instances.

A A A

Report Problems to the Food and Drug Administration

 

You are encouraged to report negative side effects of prescription drugs to the FDA. Visit the FDA MedWatch website or call 1-800-FDA-1088.


Women's Health

Find out what women really need.