July 25, 2016
Recommended Topic Related To:


"The U.S. Food and Drug Administration today approved Inflectra (infliximab-dyyb) for multiple indications. Inflectra is administered by intravenous infusion. This is the second biosimilar approved by the FDA.

Inflectra is biosimilar to"...




Mechanism Of Action

ULTRAM® is a centrally acting synthetic opioid analgesic. Although its mode of action is not completely understood, from animal tests, at least two complementary mechanisms appear applicable: binding of parent and M1 metabolite to μ-opioid receptors and weak inhibition of reuptake of norepinephrine and serotonin.

Opioid activity is due to both low affinity binding of the parent compound and higher affinity binding of the O-demethylated metabolite M1 to μ-opioid receptors. In animal models, M1 is up to 6 times more potent than tramadol in producing analgesia and 200 times more potent in μ-opioid binding. Tramadol-induced analgesia is only partially antagonized by the opiate antagonist naloxone in several animal tests. The relative contribution of both tramadol and M1 to human analgesia is dependent upon the plasma concentrations of each compound (see Pharmacokinetics).

Tramadol has been shown to inhibit reuptake of norepinephrine and serotonin in vitro, as have some other opioid analgesics. These mechanisms may contribute independently to the overall analgesic profile of ULTRAM®. Analgesia in humans begins approximately within one hour after administration and reaches a peak in approximately two to three hours.

Apart from analgesia, ULTRAM® administration may produce a constellation of symptoms (including dizziness, somnolence, nausea, constipation, sweating and pruritus) similar to that of opioids. In contrast to morphine, tramadol has not been shown to cause histamine release. At therapeutic doses, ULTRAM® has no effect on heart rate, left-ventricular function or cardiac index. Orthostatic hypotension has been observed.


The analgesic activity of ULTRAM® is due to both parent drug and the M1 metabolite (see Mechanism of Action). Tramadol is administered as a racemate and both the [-] and [+] forms of both tramadol and M1 are detected in the circulation. Tramadol is well absorbed orally with an absolute bioavailability of 75%. Tramadol has a volume of distribution of approximately 2.7 L/kg and is only 20% bound to plasma proteins. Tramadol is extensively metabolized by a number of pathways, including CYP2D6 and CYP3A4, as well as by conjugation of parent and metabolites. One metabolite, M1, is pharmacologically active in animal models. The formation of M1 is dependent upon CYP2D6 and as such is subject to inhibition, which may affect the therapeutic response (see DRUG INTERACTIONS). Tramadol and its metabolites are excreted primarily in the urine with observed plasma half-lives of 6.3 and 7.4 hours for tramadol and M1, respectively. Linear pharmacokinetics have been observed following multiple doses of 50 and 100 mg to steady-state.


Racemic tramadol is rapidly and almost completely absorbed after oral administration. The mean absolute bioavailability of a 100 mg oral dose is approximately 75%. The mean peak plasma concentration of racemic tramadol and M1 occurs at two and three hours, respectively, after administration in healthy adults. In general, both enantiomers of tramadol and M1 follow a parallel time course in the body following single and multiple doses although small differences (~ 10%) exist in the absolute amount of each enantiomer present.

Steady-state plasma concentrations of both tramadol and M1 are achieved within two days with q.i.d. dosing. There is no evidence of self-induction (see Figure 1.1 and Table 1.4 below).

Figure 1.1: Mean Tramadol and M1 Plasma Concentration Profiles after a Single 100 mg Oral Dose and after Twenty-Nine 100 mg Oral Doses of Tramadol HCl Given q.i.d.

Mean Tramadol and M1 Plasma Concentration Profiles - Illustration

Table 1.4: Mean (%CV) Pharmacokinetic Parameters for Racemic Tramadol and M1 Metabolite

Population/ Dosage Regimena Parent Drug/ Metabolite Cmax
Time to Peak (hrs) Clearance/Fb (mL/min/kg) t½ (hrs)
Healthy Adults,
100 mg q.i.d., MD p.o.
Tramadol 592 (30) 2.3 (61) 5.90 (25) 6.7 (15)
M1 110 (29) 2.4 (46) c 7.0 (14)
Healthy Adults, 100 mg SD p.o. Tramadol 308 (25) 1.6 (63) 8.50 (31) 5.6 (20)
M1 55.0 (36) 3.0 (51) c 6.7 (16)
Geriatric, ( > 75 yrs) 50 mg SD p.o. Tramadol 208 (31) 2.1 (19) 6.89 (25) 7.0 (23)
M1 d d c d
Hepatic Impaired, 50 mg SD p.o Tramadol 217 (11) 1.9 (16) 4.23 (56) 13.3 (11)
M1 19.4 (12) 9.8 (20) c 18.5 (15)
Renal Impaired, CLcr10-30 mL/min 100 mg SD i.v. Tramadol c c 4.23 (54) 10.6 (31)
M1 c c c 11.5 (40)
Renal Impaired, CLcr < 5 mL/min 100 mg SD i.v. Tramadol c c 3.73 (17) 11.0 (29)
M1 c c c 16.9 (18)
a SD = Single dose, MD = Multiple dose, p.o.= Oral administration, i.v.= Intravenous administration, q.i.d. = Four times daily
b F represents the oral bioavailability of tramadol
c Not applicable
d Not measured


The volume of distribution of tramadol was 2.6 and 2.9 L/kg in male and female subjects, respectively, following a 100 mg intravenous dose. The binding of tramadol to human plasma proteins is approximately 20% and binding also appears to be independent of concentration up to 10 μg/mL. Saturation of plasma protein binding occurs only at concentrations outside the clinically relevant range.


Following oral administration, tramadol is extensively metabolized by a number of pathways, including CYP2D6 and CYP3A4, as well as by conjugation of parent and metabolites. Approximately 30% of the dose is excreted in the urine as unchanged drug, whereas 60% of the dose is excreted as metabolites. The major metabolic pathways appear to be N- and O- demethylation and glucuronidation or sulfation in the liver. Metabolite M1 (O-desmethyltramadol) is pharmacologically active in animal models. Formation of M1 is dependent on CYP2D6 and as such is subject to inhibition, which may affect the therapeutic response (see DRUG INTERACTIONS).

Approximately 7% of the population has reduced activity of the CYP2D6 isoenzyme of cytochrome P450. These individuals are “poor metabolizers” of debrisoquine, dextromethorphan, and tricyclic antidepressants, among other drugs. Based on a population PK analysis of Phase I studies in healthy subjects, concentrations of tramadol were approximately 20% higher in “poor metabolizers” versus “extensive metabolizers”, while M1 concentrations were 40% lower. In vitro drug interaction studies in human liver microsomes indicate that inhibitors of CYP2D6 such as fluoxetine and its metabolite norfluoxetine, amitriptyline and quinidine inhibit the metabolism of tramadol to various degrees. The full pharmacological impact of these alterations in terms of either efficacy or safety is unknown. Concomitant use of serotonin reuptake inhibitors and MAO inhibitors may enhance the risk of adverse events, including seizure (see WARNINGS AND PRECAUTIONS) and serotonin syndrome.


Tramadol is eliminated primarily through metabolism by the liver and the metabolites are eliminated primarily by the kidneys. The mean terminal plasma elimination half-lives of racemic tramadol and racemic M1 are 6.3 ± 1.4 and 7.4 ± 1.4 hours, respectively. The plasma elimination half-life of racemic tramadol increased from approximately six hours to seven hours upon multiple dosing.

Special Populations and Conditions


Pharmacokinetics of ULTRAM® tablets have not been studied in pediatric patients below 18 years of age.


Healthy elderly subjects aged 65 to 75 years have plasma tramadol concentrations and elimination half-lives comparable to those observed in healthy subjects less than 65 years of age. In subjects over 75 years, maximum serum concentrations are elevated (208 vs. 162 ng/mL) and the elimination half-life is prolonged (7 vs. 6 hours) compared to subjects 65 to 75 years of age. Adjustment of the daily dose is recommended for patients older than 75 years (see DOSAGE AND ADMINISTRATION).


The absolute bioavailability of tramadol was 73% in males and 79% in females. The plasma clearance was 6.4 mL/min/kg in males and 5.7 mL/min/kg in females following a 100 mg i.v. dose of tramadol. Following a single oral dose, and after adjusting for body weight, females had a 12% higher peak tramadol concentration and a 35% higher area under the concentration-time curve compared to males. The clinical significance of this difference is unknown.

Hepatic Insufficiency

Metabolism of tramadol and M1 is reduced in patients with advanced cirrhosis of the liver, resulting in both a larger area under the concentration time curve for tramadol and longer tramadol and M1 elimination half-lives (13 hrs for tramadol and 19 hrs for M1). In cirrhotic patients, adjustment of the dosing regimen is recommended (see WARNINGS AND PRECAUTIONS and DOSAGE AND ADMINISTRATION).

Renal Insufficiency

Excretion of tramadol and metabolite M1 is reduced in patients with creatinine clearance of less than 30 mL/min, adjustment of dosing regimen in this patient population is recommended. The total amount of tramadol and M1 removed during a 4-hour dialysis period is less than 7% of the administered dose (see WARNINGS AND PRECAUTIONS and DOSAGE AND ADMINISTRATION). 

Clinical Trials

ULTRAM® was evaluated in single-dose trials (dental and surgery), multiple-dose, [short-term trials (dental and surgery), long-term trials (chronic malignant and non-malignant pain), and trials evaluating the impact of dose titration on tolerability]. Clinical trials in non-malignant pain included patients with osteoarthritis, low back pain, diabetic neuropathy and fibromyalgia. These trials included a randomized, double-blind, parallel group design, and in each of the single-dose and short-term multiple-dose trials tramadol was compared to a standard reference analgesic (either codeine, ASA/codeine or APAP/propoxyphene), placebo or to both. The active controls were included to establish model sensitivity. The efficacy of tramadol in these trials was established based on Total Pain Relief (TOTPAR), Sum of Pain Intensity Difference (SPID) and time to remedication.

Collectively, a total of 2549 patients with dental pain, 1940 patients with surgical pain, 170 patients with chronic malignant pain, 119 patients with sub-acute low back pain, and 2046 patients with chronic non-malignant pain were enrolled into the 28 efficacy trials. Of the 6824 total patients enrolled into these trials, 4075 were randomized to a tramadol treatment arm.

Study Results

Acute Pain, Single- and Multiple-Dose Studies

ULTRAM® has been given in single oral doses of 50, 75 and 100 mg to patients with pain following surgical procedures and pain following oral surgery (extraction of impacted molars).

Results of these trials demonstrated statistically superior pain relief for tramadol compared to placebo. Data from these key trials provide information regarding the optimal analgesic dosage range of tramadol.

In single-dose dental trials, tramadol was superior to placebo at doses of 100 mg or greater (p ≤ 0.05). In addition, tramadol at doses of 100mg or greater were equivalent to or statistically superior to the reference analgesics for Total Pain Relief (TOTPAR) and Sum of Pain Intensity Difference (SPID) across the entire evaluation interval. The results of the multiple-dose short-term trials in acute pain also provide evidence for efficacy of tramadol in the management of acute pain.

Tramadol has been studied in three long-term controlled trials involving a total of 820 patients, with 530 patients receiving tramadol. Patients with a variety of chronic painful conditions were studied in double-blind trials of one to three months duration.

Titration Trials

Two titration trials, TPS DOS and CAPSS-047, provide information regarding appropriate dose titration during chronic use of tramadol. These trials show that a longer titration period can significantly reduce the incidence of adverse events, and the frequency of withdrawal due to adverse events, leading to improved tolerability and overall benefit-risk profile. Efficacy evaluations in these studies suggest that slowing the rate of titration improves tolerability and does not negatively impact on drug efficacy.

In a randomized, blinded clinical study with 129 to 132 patients per group, a 10-day titration to a daily ULTRAM® dose of 200 mg (50 mg q.i.d.), attained in 50 mg increments every 3 days, was found to result in fewer discontinuations due to dizziness or vertigo than titration over only 4 days or no titration. In a second study with 54 to 59 patients per group, patients who had nausea or vomiting when titrated over 4 days were randomized to re-initiate ULTRAM® therapy using slower titration rates.

A 16-day titration schedule, starting with 25 mg qAM and using additional doses in 25 mg increments every third day to 100 mg/day (25 mg q.i.d.), followed by 50 mg increments in the total daily dose every third day to 200 mg/day (50 mg q.i.d.), resulted in fewer discontinuations due to any cause than did a 10-day titration schedule. See Figure 2.1.

Figure 2.1: Protocol CAPSS-047 – Time to Discontinuation Due to Nausea/Vomiting

Time to Discontinuation Due to Nausea/Vomiting - Illustration

Detailed Pharmacology


Tramadol HCl, 2-[(dimethylamino)methyl]-1-(3-methoxyphenyl) cyclohexanol HCl, is a centrally acting synthetic analgesic compound. It is thought to produce its analgesic effect through at least two complementary mechanisms of action: agonist activity at the μ-opioid receptor and weak inhibition of neuronal monoamine reuptake. These dual activities are observed in studies conducted in vitro as well as in nonclinical animal models of antinociception. In studies conducted in vitro, tramadol inhibited binding to native rat μ-opioid receptor at approximately the same concentration at which it blocked the reuptake of norepinephrine and serotonin. The K1 values for μ-opioid receptor affinity and monoamine reuptake inhibitory activities are 2.1 and ~ 1 μM, respectively. Tramadol affinities for recombinant human opioid receptors (K1 = 17 μM) were slightly weaker than those observed at the rat receptors. Apart from analgesia, tramadol may produce a constellation of symptoms similar to that of an opioid.

Tramadol is an efficacious analgesic in a wide variety of standard analgesic models of acute, tonic, chronic, or neuropathic pain. In some of these studies, specific antagonists were used to probe the mechanism of tramadol's antinociceptive action. In contrast to the full blockade of morphine antinociception by naloxone, the antinociceptive action of tramadol in most tests is only partially blocked by naloxone. Furthermore, although the antinociception of morphine is unaffected by the alpha2-adrenergic antagonist yohimbine or the serotonergic antagonist ritanserin, each of these antagonists reduces tramadol's antinociception. These pharmacologic studies suggest the contribution of both opioid and monoamine mechanisms to tramadol antinociception.

In drug interaction studies carried out with tramadol, a substantial increase in toxicity was found after pretreatment with an MAO inhibitor, tranylcypromine. The antinociceptive effect of the compound was reduced by concomitant administration of barbiturates and atropine, and was virtually eliminated by tranylcypromine. Physostigmine potentiated the antinociceptive effect of a sub-maximal dose of tramadol. Other potential drug interactions based on enzyme induction or displacement from protein binding were thought to be unlikely with tramadol as no inductive effect on liver enzymes has been found for this agent and the protein binding is too low to induce relevant interference with the binding of other compounds.


Tramadol was rapidly absorbed after oral administration in the mouse, rat, and dog. In dogs, the mean absolute bioavailability of a single 20 mg/kg oral dose of tramadol (Avicel formulation in gelatin capsules) was 81.8%, with maximum plasma concentrations achieved in about one hour. Distribution of radioactivity into tissues was rapid following the intravenous administration of 14C-labelled tramadol to rats, with the highest concentration of radioactivity found in the liver. Radioactivity levels in the brain were comparable to plasma levels for the first 2 hours post-injection, demonstrating that the drug crosses the blood brain barrier. Concentrations in the kidneys, lungs, spleen, and pancreas were also higher than the serum concentration.

The major metabolic pathway was qualitatively similar for all species studied, including mouse, rat, hamster, guinea pig, rabbit, and man, and involved both Phase I (N- and O-demethylation and 4-hydroxylation; eight metabolites) and Phase II (glucuronidation or sulfation; thirteen metabolites) reactions. The primary metabolite mono-O-desmethyltramadol (M1) has antinociceptive activity. In biochemical studies, (±) mono-O-desmethyltramadol and its enantiomers each had greater affinity for opioid receptors and were less potent inhibitors of monoamine uptake than were the corresponding parent compounds.

Excretion was primarily by the renal route in the animal species studied. After oral administration, fecal excretion was approximately 13% in rats and dogs, and 80% of 14C-labelled tramadol doses were excreted in the urine within 72 to 216 hours of dosing. Amounts of unchanged tramadol excreted in the urine were higher in man (approximately 30% of the dose) than in animals (approximately 1%).

Tramadol is a mild inducer of ethoxycoumarin deethylase activity in the mouse and dog.


Acute Toxicity

The acute toxicity of tramadol hydrochloride has been examined in the rat. The results of the study are summarized in the following table.

Table 2.1: Acute Toxicity Studies Summary

Species/Strain Age/B.W. No./Sex/ Group Duration Route Vehicle Dosage Levels (mg/kg) Lethality Results
Rat Crl:COBS® (WI) BR Age: 7 to 8 wk B.W. Range: 161 to 220 g 5M or 8M single dose p.o.
1% aqueous HPMC Tramadol: 150 APAP: 300 Tramadol/APAP: 150/300 Vehicle Control: 1% aqueous HPMC (9 mL/kg) No mortality No treatment-related mortality, clinical observations, or effects on body weight.
APAP = acetaminophen; B.W. = body weight; HPMC = hydroxypropylmethylcellulose; M = male; F = female; mo = month; p.o. = oral; wk = week; ↑ = increased; ↓= decreased

Long-Term Toxicity

Multi-dose toxicity studies were conducted in rats and dogs. The following table summarizes the results of the two pivotal multi-dose studies.

Table 2.2: Multi-dose Toxicity Studies–Protocol Summaries/Results

Species/Strain Age/B.W. No./Group/ Duration/Route Dosage (mg/kg/day) Evaluated Parameters Results
Rat Crl:CD® BR, VAF/Plus® 10/3 mo/p.o. (gavage) 1) Vehicle Control: 0.5% Methocel (10 mL/kg/day) Mortality, clinical observations, B.W., food consumption, ophthalmological examination, drug metabolism, hematology, coagulation, clinical chemistry, urinalysis, organ weights, gross pathology, histopathology Vehicle Control: Four M deaths (attributed to dosing errors); alopecia in both sexes
7.5/65: Alopecia in both sexes; ↑liver weights in males
22.5/195: One M death (cause of death not determined); alopecia in both sexes; ↑ liver weights in males; slightly ↑urine volume in females
2) Tramadol/APAP:
45/390: Alopecia, ↑ salivation, slightly higher urine volume in both sexes; mild treatment related increases in K+ concentration, slightly ↓ RBC, ↑ MCV, MCH, ↑ liver weights, slightly ↓ ALT and AST activity and ↑ ALP in females
3) Tramadol: 45
4) APAP: 390 45: Alopecia, ↑ salivation, in both sexes; slightly ↓ ALT and AST activity and ↑ ALP in females.
390: ↑ salivation, slightly higher urine volume in both sexes; ↑ liver weights in males; slightly ↓ RBC, ↑ MCV, MCH in males; alopecia, mild treatment related increases in K+ concentration, slightly ↓ ALT and AST activity and ↑ ALP in females.Additional findings: (1) higher kidney weights in males dosed with APAP or tramadol/APAP; (2) lower adrenal gland weights in males dosed with tramadol and/or APAP.
ALP = alkaline phosphatase; ALT = alanine aminotransferase; APAP = acetaminophen; AST = aspartate aminotransferase; K = potassium; MCH = mean corpuscular hemoglobin; MCV = mean corpuscular volume; mo = month; p.o. = oral; RBC = red blood cell; wk = week; ↑ = increased; ↓ = decreased

Table 2.2: Multi-dose Toxicity Studies - Protocol Summaries/Results (continued)

Species/Strain Age/B.W. No./Group/ Duration/ Route Dosage (mg/kg/day) Evaluated Parameters Results
Dog 4 1) Vehicle Control: 0.5% Methocel (1 mL/kg/b.i.d.) Mortality, clinical observations, B.W., estimated food consumption, electrocardiographic/ ophthalmological/ physical examination, drug absorption, hematology. Coagulation, clinical chemistry, urinalysis, gross pathology, microscopic histopathology, organ weights. 7.5/65: NOAEL
Beagle 3 mo
p.o. (gavage) daily dose divided between two dosing sessions approx.5.5 h apart
22.5/195: One male dog was sacrificed moribund on Day 32. ↓ activity, discoloured/food emesis, decreased/absent feces, discoloured urine, urine stained coat, jaundice, occult blood in urine, ↓ B.W. early in study related to ↓ food consumption, slightly to moderately ↓ RBC, Hb, and Hct counts, ↑ MCV, reticulocyte and platelet counts, slightly to moderately ↑ ALT, ALP, GGT, and urine bilirubin values, changes in liver, kidney, bone marrow, spleen, (males) and thymus (males) in both sexes; fine tremor, edema in males; hunched posture, emaciation, ataxia, pallor, ↑ total bilirubin, in females
22.5: ↓ B.W. early in study related to ↓ food consumption in both sexes.
195: ↓ B.W. early in study related to ↓ food consumption, slightly to moderately ↓ RBC, Hb, and Hct counts, ↑ MCV, reticulocyte and platelet counts, ↑ urine bilirubin, changes in liver, kidney, bone marrow, spleen (males), and thymus (males) in both sexes; slightly ↑ ALP, GGT, and total bilirubin values in females
2) Tramadol/ APAP: 7.5/65
3)    Tramadol: 22.5
4)    APAP: 195
a Continuation of 4 week dog study results
ALP = alkaline phosphatase; ALT = alanine aminotransferase; APAP = acetaminophen; AST = aspartate aminotransferase; K = potassium; MCH = mean corpuscular hemoglobin; MCV = mean corpuscular volume; mo = month; p.o. = oral; RBC = red blood cell; wk = week; ↑ = increased; ↓ = decreased; Hb = Hemoglobin; Hct = Hematocrit; GGT = γ-glutamyl transferase


A slight, but statistically significant, increase in two common murine tumors, pulmonary and hepatic, was observed in a mouse carcinogenicity study, particularly in aged mice. Mice were dosed orally up to 30 mg/kg (90 mg/m² or 0.36 times the maximum daily human dosage of 246 mg/m²) for approximately two years, although the study was not done with the Maximum Tolerated Dose. This finding is not believed to suggest risk in humans. No such finding occurred in a rat carcinogenicity study (dosing orally up to 30 mg/kg, 180 mg/m², or 0.73 times the maximum daily human dosage).


Tramadol was not mutagenic in the following assays: Ames Salmonella microsomal activation test, CHO/HPRT mammalian cell assay, mouse lymphoma assay (in the absence of metabolic activation), dominant lethal mutation tests in mice, chromosome aberration test in Chinese hamsters, and bone marrow micronucleus tests in mice and Chinese hamsters. Weakly mutagenic results occurred in the presence of metabolic activation in the mouse lymphoma assay and micronucleus test in rats. Overall, the weight of evidence from these tests indicates that tramadol does not pose a genotoxic risk to humans.

Reproductive Studies

No effects on fertility were observed for tramadol at oral dose levels up to 50 mg/kg (300 mg/m²) in male rats and 75 mg/kg (450 mg/m²) in female rats. These dosages are 1.2 and 1.8 times the maximum daily human dosage of 246 mg/m², respectively.

Tramadol has been shown to be embryotoxic and fetotoxic in mice, (120 mg/kg or 360 mg/m²), rats ( ≥ 25 mg/kg or 150 mg/m²) and rabbits ( ≥ 75 mg/kg or 900 mg/m²) at maternally toxic dosages, but was not teratogenic at these dose levels. These dosages on a mg/m² basis are 1.4, ≥ 0.6, and ≥ 3.6 times the maximum daily human dosage (246 mg/m²) for mouse, rat and rabbit, respectively.

No drug-related teratogenic effects were observed in progeny of mice (up to 140 mg/kg or 420 mg/m²), rats (up to 80 mg/kg or 480 mg/m²) or rabbits (up to 300 mg/kg or 3600 mg/m²) treated with tramadol by various routes. Embryo and fetal toxicity consisted primarily of decreased fetal weights, skeletal ossification and increased supernumerary ribs at maternally toxic dose levels. Transient delays in developmental or behavioral parameters were also seen in pups from rat dams allowed to deliver. Embryo and fetal lethality were reported only in one rabbit study at 300 mg/kg (3600 mg/m²), a dose that would cause extreme maternal toxicity in the rabbit. The dosages listed for mouse, rat and rabbit are 1.7, 1.9 and 14.6 times the maximum daily human dosage (246 mg/m²), respectively.

Tramadol was evaluated in peri- and post-natal studies in rats. Progeny of dams receiving oral (gavage) dose levels of 50 mg/kg (300 mg/m² or 1.2 times the maximum daily human tramadol dosage) or greater had decreased weights, and pup survival was decreased early in lactation at 80 mg/kg (480 mg/m² or 1.9 and higher the maximum daily human dose).

Table 2.3: Reproductive Study – Summary

Species/Strain (No./Group) Route/ Duration Dosage (mg/kg/day) Observations Results
Rat Crl:CD® BR, VAF/Plus® 28/group p.o. (gavage) Gestation Days 6 through 17 1)    Vehicle Control: 0.5% Methocel (10 mL/kg/day)
2)    Tramadol/APAP: 10/87 25/217 50/434
3)    Tramadol: 50
Maternal B.W.; food consumption, clinical signs, and post-mortem exam; number of corpora lutea, implantations, fetuses, resorptions, and pre- and postimplantation loss; fetal weight; fetal alterations

10/87: ↓ B.W. gain during treatment; ↑ B.W. gain during postdose period; ↓ food consumption during treatment
25/217: ↑ alopecia during and after treatment; B.W. loss at treatment initiation; ↓ B.W. gain during treatment; ↑ B.W. gain during postdose period; ↓ food consumption during treatment
50/434: ↑ alopecia during and after treatment; B.W. loss at treatment initiation; ↓ B.W. gain during treatment; ↑ B.W. gain during postdose period; ↓ food consumption during treatment; ↓ fetal B.W.; ↑ supernumerary ribs (attributed to maternal stress, not drug treatment)
50: ↑ alopecia during and after treatment; B.W. loss at treatment initiation; ↓ B.W. gain during treatment; ↑ B.W. gain during postdose period; ↓ food consumption during treatment

APAP = acetaminophen; B.W. = body weight; NOAEL = no-observed-adverse-effect level; p.o. = oral; ↑ = increased; ↓ = decreased

Dependence Liability

The physical dependence liability potential associated with the chronic use of tramadol has been evaluated in a number of animal studies, including investigations in the mouse, rat, and monkey. A slight degree of antinociceptive tolerance to tramadol evolved in the mouse studies, but there was little or no indication of the development of physical dependence. No evidence of dependence was observed in the rat study. However, in dogs addicted to morphine, withdrawal symptoms were relieved by tramadol. In primate studies, which evaluated the physical dependence and reinforcement properties of tramadol, the physical dependence of the drug was deemed to be low.


Barkin R L. Focus on Tramadol: A Centrally Acting Analgesic for moderate to moderately severe pain. Formulary. 1995;30 (6): 321-325.

Cicero TJ, Adams EH, Geller A, Inciardi JA, Munoz A, et al. A postmarketing surveillance program to monitor ULTRAM® (tramadol hydrochloride) abuse in the United States. Drug and Alcohol Dependence. 1999;57:7-22.

Dalgin PH. Use of tramadol in chronic pain. Clin Geriatr. 1997;5(7).

Fleischmann RM. Caldwell JR. Roth SH, et.al. Tramadol for the treatment of joint pain associated with osteoarthritis: A randomized, double-blind, placebo-controlled trial. Current Therapeutic Research, Clinical & Experimental. 2001;62(2):113-128.

Gibson TP. Pharmacokinetics, efficacy and safety of analgesia with a focus on tramadol HCl. Am J Med. 1996;101(1A):47S-53S.

Grond S, Sablotzki A. Clinical Pharmacology of Tramadol. Clin. Pharmacokinet 2004;43(13): 879-923.

Harati Y, Gooch C, Swenson M, et. al. Maintenance of the long-term effectiveness of tramadol in treatment of the pain of diabetic neuropathy. J Diabetes Complications. 2000;14(2):65-70. 12.

Harati Y, Gooch C, Swenson M, et. al. Double-blind randomized trial of tramadol for the treatment of the pain of diabetic neuropathy. Neurology. 1998;50(6):1842-1846.

Katz W A. The Role of Tramadol in the Management of Musculoskeletal Pain. Todays Ther Trends. 1995;13(3): 177-186.

Katz W A. Pharmacology and Clinical Experience with Tramadol in Osteoarthritis. Drugs. 1996;52 (Suppl 3): 39-47.

Petrone D, Kamin M, Olson WH. Slowing the titration rate of tramadol HCl reduces the incidence of discontinuation due to nausea and/or vomiting: a double-blind, randomized trial. J Clin Pharm Ther. 1999;24(2):115-123.

Raffa RB, Friderichs E. The basic science aspect of tramadol hydrochloride. Pain Reviews. School of Pharmacy, Temple University, Penn, USA and Grünenthal GmBH, Aachen, Germany, 1996; 3:249-271.

Roth SH. Efficacy and safety of tramadol HCl in breakthrough musculoskeletal pain attributed to osteoarthritis. J Rheumatol. 1998;25(7):1358-1363. 

Russell IJ, Kamin M, Bennett RM, et. al. Efficacy of tramadol in treatment of pain in fibromyalgia. J Clin Rheumatol. 2000: 6(5):250-257.

Schnitzer TJ. Gray WL. Paster RZ. Kamin M. Efficacy of tramadol in treatment of chronic low back pain. Journal of Rheumatology 2000; 27(3):772-778).

Schnitzer TJ. Managing chronic pain with tramadol in elderly patients. Clin Geriatr. 1999;7(9):35-37,41-45.

Last reviewed on RxList: 3/18/2015
This monograph has been modified to include the generic and brand name in many instances.

Ultram - User Reviews

Ultram User Reviews

Now you can gain knowledge and insight about a drug treatment with Patient Discussions.

Here is a collection of user reviews for the medication Ultram sorted by most helpful. Patient Discussions FAQs

Report Problems to the Food and Drug Administration


You are encouraged to report negative side effects of prescription drugs to the FDA. Visit the FDA MedWatch website or call 1-800-FDA-1088.


Get the latest treatment options