Recommended Topic Related To:

Vaqta

"The U.S. Food and Drug Administration (FDA) continues its investigation of acute hepatitis illnesses linked to products labeled OxyElite Pro.

FDA advises consumers not to use any dietary supplements labeled OxyElite Pro or VERSA-1 becau"...

Vaqta

CLINICAL PHARMACOLOGY

Mechanism Of Action

VAQTA has been shown to elicit antibodies to hepatitis A as measured by ELISA.

Protection from hepatitis A disease has been shown to be related to the presence of antibody. However, the lowest titer needed to confer protection has not been determined.

Clinical Studies

Efficacy Of VAQTA: The Monroe Clinical Study

The immunogenicity and protective efficacy of VAQTA were evaluated in a randomized, double-blind, placebo-controlled study involving 1037 susceptible healthy children and adolescents 2 through 16 years of age in a U.S. community with recurrent outbreaks of hepatitis A (The Monroe Efficacy Study). All of these children were Caucasian, and there were 51.5% male and 48.5% female. Each child received an intramuscular dose of VAQTA (25U) (N=519) or placebo (alum diluent) (N=518). Among those individuals who were initially seronegative (measured by a modification of the HAVAB radioimmunoassay [RIA]), seroconversion was achieved in > 99% of vaccine recipients within 4 weeks after vaccination. The onset of seroconversion following a single dose of VAQTA was shown to parallel the onset of protection against clinical hepatitis A disease.

Because of the long incubation period of the disease (approximately 20 to 50 days, or longer in children), clinical efficacy was based on confirmed cases1 of hepatitis A occurring ≥ 50 days after vaccination in order to exclude any children incubating the infection before vaccination. In subjects who were initially seronegative, the protective efficacy of a single dose of VAQTA was observed to be 100% with 21 cases of clinically confirmed hepatitis A occurring in the placebo group and none in the vaccine group (p < 0.001). The number of clinically confirmed cases of hepatitis A ≥ 30 days after vaccination were also compared. In this analysis, 28 cases of clinically confirmed hepatitis A occurred in the placebo group while none occurred in the vaccine group ≥ 30 days after vaccination. In addition, it was observed in this trial that no cases of clinically confirmed hepatitis A occurred in the vaccine group after day 16.2 Following demonstration of protection with a single dose and termination of the study, a booster dose was administered to a subset of vaccinees 6, 12, or 18 months after the primary dose.

No cases of clinically confirmed hepatitis A disease ≥ 50 days after vaccination have occurred in those vaccinees from The Monroe Efficacy Study monitored for up to 9 years.

Other Clinical Studies

The efficacy of VAQTA in other age groups was based upon immunogenicity measured 4 to 6 weeks following vaccination. VAQTA was found to be immunogenic in all age groups.

Children — 12 through 23 Months of Age

In a clinical trial, children 12 through 23 months of age were randomized to receive the first dose of VAQTA with or without M-M-R II and VARIVAX (N=617) and the second dose of VAQTA with or without Tripedia and optionally either oral poliovirus vaccine (no longer licensed in the US) or IPOL (N=555). The race distribution of study subjects who received at least one dose of VAQTA was as follows: 56.7% Caucasian; 17.5% Hispanic-American; 14.3% African-American; 7.0% Native American; 3.4% other; 0.8% Oriental; 0.2% Asian; and 0.2% Indian. The distribution of subjects by gender was 53.6% male and 46.4% female. In the analysis population, there were 471 initially seronegative children 12 through 23 months of age, who received the first dose of VAQTA with (N=237) or without (N=234) M-M-R II and VARIVAX of whom 96% (95% CI: 93.7%, 97.5%) seroconverted (defined as having an anti-HAV titer ≥ 10 mIU/mL) post dose 1 with an anti-HAV geometric mean titer (GMT) of 48 mIU/mL (95% CI: 44.7, 51.6). There were 343 children in the analysis population who received the second dose of VAQTA with (N=168) or without (N=175) Tripedia and optional oral poliovirus vaccine or IPOL of whom 100% (95% CI: 99.3%, 100%) seroconverted post dose 2 with an anti-HAV GMT of 6920 mIU/mL (95% CI: 6136, 7801). Of children who received only VAQTA at both visits, 100% (n=97) seroconverted after the second dose of VAQTA. In a clinical trial involving 653 healthy children 12 to 15 months of age, 330 were randomized to receive VAQTA, ProQuad, and pneumococcal 7-valent conjugate vaccine concomitantly, and 323 were randomized to receive ProQuad and pneumococcal 7-valent conjugate vaccine concomitantly followed by VAQTA 6 weeks later. The race distribution of the study subjects was as follows: 60.3% Caucasian; 21.6% African-American; 9.5% Hispanic-American; 7.2% other; 1.1% Asian/Pacific; and 0.3% Native American. The distribution of subjects by gender was 50.7% male and 49.3% female. In the analysis population, the seropositivity rate for hepatitis A antibody (defined as the percent of subjects with an anti- HAV titer ≥ 10 mIU/mL) was 100% (n=182; 95% CI: 98.0%, 100%) post dose 2 with an anti-HAV GMT of 4977 mIU/mL (95% CI: 4068, 6089) when VAQTA was given with ProQuad and pneumococcal 7-valent conjugate vaccine and 99.4% (n=159, 95% CI: 96.5%, 100%) post dose 2 with an anti-HAV GMT of 6123 mIU/mL (95% CI: 4826, 7770) when VAQTA alone was given. These seropositivity rates were similar whether VAQTA was administered with or without ProQuad and pneumococcal 7-valent conjugate vaccine.

In an open, multicenter, randomized study involving 617 children 15 months of age, 306 were randomized to receive VAQTA with or without PedvaxHIB and INFANRIX, and 311 were randomized to receive VAQTA with or without PedvaxHIB. The race distribution of the study subjects was as follows: 63.9% Caucasian; 17.5% Hispanic-American; 14.7% Black; 2.6% other; and 1.3% Asian. The distribution of subjects by gender was 54.0% male and 46.0% female. The seropositivity rate for hepatitis A antibody (defined as the percent of subjects with an anti-HAV titer ≥ 10 mIU/mL) 4 weeks post dose 2 was 100% (n=208, 95% CI: 98.2%, 100.0%) in those who received VAQTA concomitantly with PedvaxHIB and INFANRIX or concomitantly with PedvaxHIB. In those subjects who received VAQTA alone, the seropositivity rate for hepatitis A antibody was 100% (n=183, 95% CI: 98.0%, 100.0%), regardless of baseline hepatitis A serostatus. Overall, the anti-HAV GMT in the concomitant groups was 3616.5 mIU/mL (95% CI: 3084.5, 4240.2). The anti-HAV GMT in the nonconcomitant groups was 4712.6 mIU/Ml (95% CI: 3996.8, 5556.8). Comparable responses were observed in both the initially seronegative and seropositive subjects.

In three combined clinical studies 1022 initially seronegative subjects received 2 doses of VAQTA alone or concomitantly with other vaccines. Of the seronegative subjects, 99.9% achieved an anti-HAV titer ≥ 10 mIU/mL (95% CI: 99.5%, 100%) and an anti-HAV GMT of 5392.1 mIU/mL (95% CI: 4996.5, 5819.0) 4 weeks following dose 2 of VAQTA.

Children/Adolescents — 2 Years through 18 Years of Age

Immunogenicity data were combined from eleven randomized clinical studies in children and adolescents 2 through 18 years of age who received VAQTA (25U/0.5 mL). These included administration of VAQTA in varying doses and regimens (N=404 received 25U/0.5 mL), the Monroe Efficacy Study (N=973), and comparison studies for process and formulation changes (N=1238). The race distribution of the study subjects who received at least one dose of VAQTA in these studies was as follows: 84.8% Caucasian; 10.6% American Indian; 2.3% African-American; 1.5% Hispanic-American; 0.6% other; 0.2% Oriental. The distribution of subjects by gender was 51.2% male and 48.8% female. The proportions of subjects who seroconverted 4 weeks after the first and second doses administered 6 months apart were 97% (n=1230; 95% CI: 96%, 98%) and 100% (n=1057; 95% CI: 99.5%, 100%) of subjects with anti-HAV GMTs of 43 mIU/mL (95% CI: 40, 45) and 10,077 mIU/mL (95% CI: 9394, 10,810), respectively.

Adults — 19 Years of Age and Older

Immunogenicity data were combined from five randomized clinical studies in adults 19 years of age and older who received VAQTA (50U/1-mL). One single-blind study evaluated doses of VAQTA with varying amounts of viral antigen and/or alum content in healthy adults ≥ 170 pounds and ≥ 30 years of age (N=208 adults administered 50U/1-mL dose). One open-label study evaluated VAQTA given with immune globulin or alone (N=164 adults who received VAQTA alone). A third study was single-blind and evaluated 3 different lots of VAQTA (N=1112). The fourth study was single-blind and evaluated doses of VAQTA with varying amounts of viral antigen in healthy adults ≥ 170 pounds and ≥ 30 years of age (N=159 adults administered the 50U/1-mL dose). The fifth study was an open-label study to evaluate various regimens for time of administration of the booster dose of VAQTA (6, 12, and 18 months post dose 1, N=354). The race distribution of the study subjects who received at least one dose of VAQTA in these studies was as follows: 93.2% Caucasian; 2.5% African-American; 2.1% Hispanic-American; 1.4% Oriental; 0.5% other; 0.3% American Indian. The distribution of subjects by gender was 44.8% male and 55.2% female. The proportion of subjects who seroconverted 4 weeks after the first and second doses administered 6 months apart was 95% (n=1411; 95% CI: 94%, 96%) and 99.9% (n=1244; 95% CI: 99.4%, 100%) with GMTs of 37 mIU/mL (95% CI: 35, 38) and 6013 mIU/mL (95% CI: 5592, 6467), respectively. Furthermore, at 2 weeks postvaccination, 69.2% (n=744; 95% CI: 65.7%, 72.5%) of adults seroconverted with an anti- HAV GMT of 16 mIU/mL after a single dose of VAQTA.

Timing Of Booster Dose Administration

Children/Adolescents — 2 through 18 Years of Age

In the Monroe Efficacy Study, children were administered a second dose of VAQTA (25U/0.5 mL) 6, 12, or 18 months following the initial dose. For subjects who received both doses of VAQTA, the GMTs and proportions of subjects who seroconverted 4 weeks after the booster dose administered 6, 12, and 18 months after the first dose are presented in Table 9.

Table 9: Children/Adolescents from the Monroe Efficacy Study Seroconversion Rates (%) and Geometric Mean Titers (GMT) for Cohorts of Initially Seronegative Vaccinees at the Time of the Booster(25U) and 4 Weeks Later

Months Following Initial 25U Dose Cohort* (n=960) 0 and 6 Months Cohort* (n=35) 0 and 12 Months Cohort* (n=39) 0 and 18 Months
  Seroconversion Rate GMT (mIU/mL) (95% CI)
6 97% 107 (98, 117) __
7 100% 10433 (9681, 11243) __
12 91% 48 (33, 71)
13 100% 12308 (9337, 16226)
18 __ 90% 50 (28, 89)
19 __ 100% 9591 (7613, 12082)
* Blood samples were taken at prebooster and postbooster time points.

Adults — 19 years of age and older

Among the 5 randomized clinical studies in adults 19 years of age and older described in Section 14.2, there were additional data in which a booster dose of VAQTA (50U/1-mL) was administered 12 or 18 months after the first dose. For subjects in these studies who received both doses of VAQTA, the proportions who seroconverted 4 weeks after the booster dose administered 6, 12, and 18 months after the first dose were 100% of 1201 subjects, 98% of 91 subjects, and 100% of 84 subjects, respectively. GMTs in mIU/mL one month after the subjects received the booster dose at 6, 12, or 18 months after the primary dose were 5987 mIU/mL (95% CI: 5561, 6445), 4896 mIU/mL (95% CI: 3589, 6679), and 6043 mIU/mL (95% CI: 4687, 7793), respectively.

Duration Of Immune Response

In follow-up of subjects in The Monroe Efficacy Study, in children ( ≥ 2 years of age) and adolescents who received two doses (25U) of VAQTA, detectable levels of anti-HAV antibodies ( ≥ 10 mIU/mL) were present in 100% of subjects for at least 10 years postvaccination. In subjects who received VAQTA at 0 and 6 months, the GMT was 819 mIU/mL (n=175) at 2.5 to 3.5 years and 505 mIU/mL (n=174) at 5 to 6 years, and 574 mIU/mL (n=114) at 10 years postvaccination. In subjects who received VAQTA at 0 and 12 months, the GMT was 2224 mIU/mL (n=49) at 2.5 to 3.5 years, 1191 mIU/mL (n=47) at 5 to 6 years, and 1005 mIU/mL (n=36) at 10 years postvaccination. In subjects who received VAQTA at 0 and 18 months, the GMT was 2501 mIU/mL (n=53) at 2.5 to 3.5 years, 1614 mIU/mL (n=56) at 5 to 6 years, and 1507 mIU/mL (n=41) at 10 years postvaccination.

In adults that were administered VAQTA at 0 and 6 months, the hepatitis A antibody response to date has been shown to persist at least 6 years. Detectable levels of anti-HAV antibodies ( ≥ 10 mIU/mL) were present in 100% (378/378) of subjects with a GMT of 1734 mIU/mL at 1 year, 99.2% (252/254) of subjects with a GMT of 687 mIU/mL at 2 to 3 years, 99.1% (219/221) of subjects with a GMT of 605 mIU/mL at 4 years, and 99.4% (170/171) of subjects with a GMT of 684 mIU/mL at 6 years postvaccination.

The total duration of the protective effect of VAQTA in healthy vaccinees is unknown at present.

Concomitant Administration Of VAQTA And Immune Globulin

The concurrent use of VAQTA (50U) and immune globulin (IG, 0.06 mL/kg) was evaluated in an openlabel, randomized clinical study involving 294 healthy adults 18 to 39 years of age. Adults were randomized to receive 2 doses of VAQTA 24 weeks apart (N=129), the first dose of VAQTA concomitant with a dose of IG followed by the second dose of VAQTA alone 24 weeks later (N=135), or IG alone (N=30). The race distribution of the study subjects who received at least one dose of VAQTA or IG in this study was as follows: 92.3% Caucasian; 4.0% Hispanic-American; 3.0% African-American; 0.3% Native American; 0.3% Asian/Pacific. The distribution of subjects by gender was 28.7% male and 71.3% female. Table 10 provides seroconversion rates and GMTs at 4 and 24 weeks after the first dose in each treatment group and at one month after a booster dose of VAQTA (administered at 24 weeks) [see DRUG INTERACTIONS].

Table 10: Seroconversion Rates (%) and Geometric Mean Titers (GMT) After Vaccination with VAQTA Plus IG, VAQTA Alone, and IG Alone

  VAQTA plus IG VAQTA IG
Weeks Seroconversion Rate GMT (mIU/mL) (95% CI)
4 100% 96% 87%
42 (39, 45) 38 (33, 42) 19 (15, 23)
(n=129) (n=135) (n=30)
24 92% 97%* 0%
83 (65, 105) 137* (112, 169) Undetectable†
(n=125) (n=132) (n=28)
28 100% 100% N/A
4872 (3716, 6388) (n=114) 6498 (5111,8261) (n=128)
*The seroconversion rate and the GMT in the group receiving VAQTA alone were significantly higher than in the group receiving VAQTA plus IG (p=0.05, p < 0.001, respectively).
†Undetectable is defined as < 10mIU/mL.
N/A = Not Applicable.

Interchangeability Of The Booster Dose

A randomized, double-blind clinical study in 537 healthy adults, 18 to 83 years of age, evaluated the immune response to a booster dose of VAQTA and HAVRIX given at 6 or 12 months following an initial dose of HAVRIX. Subjects were randomized to receive VAQTA (50U) as a booster dose 6 months (N=232) or 12 months (N=124) following an initial dose of HAVRIX or HAVRIX (1440 EL. U) as a booster dose 6 months (N=118) or 12 months (N=63) following an initial dose of HAVRIX. The race distribution of the study subjects who received the booster dose of VAQTA or HAVRIX in this study was as follows: 87.2% Caucasian; 8.0% African-American; 1.9% Hispanic-American; 1.3% Oriental; 0.9% Asian; 0.4% Indian; 0.4% other. The distribution of subjects by gender was 44.9% male and 55.1% female. When VAQTA was given as a booster dose following HAVRIX, the vaccine produced an adequate immune response (see Table 11) [see DOSAGE AND ADMINISTRATION].

Table 11: Seropositivity Rate, Booster Response Rate* and Geometric Mean Titer 4 Weeks Following a Booster Dose of VAQTA or HAVRIX Administered 6 to 12 Months After First Dose of HAVRIX†

First Dose Booster Dose Seropositivity Rate Booster Response Rate* Geometric Mean Titer
HAVRIX 1440 EL.U. VAQTA 50 U 99.7% (n=313) 86.1% (n=310) 3272 (n=313)
HAVRIX 1440 EL.U. HAVRIX 1440 EL.U. 99.3% (n=151) 80.1% (n=151) 2423 (n=151)
*Booster Response Rate is defined as greater than or equal to a tenfold rise from prebooster to postbooster titer and postbooster titer ≥ 100 mIU/mL.
†Study conducted in adults 18 years of age and older.

Immune Response To Concomitantly Administered Vaccines

Clinical Studies of VAQTA with M-M-R II, VARIVAX, and Tripedia

In the clinical trial in which children 12 months of age received the first dose of VAQTA concomitantly with M-M-R II and VARIVAX described in Section 14.2, rates of seroprotection to hepatitis A were similar between the two groups who received VAQTA with or without M-M-R II and VARIVAX. Measles, mumps, and rubella immune responses were tested in 241 subjects, 263 subjects, and 270 subjects, respectively. Seropositivity rates were 98.8% [95% CI: 96.4%, 99.7%] for measles, 99.6% [95% CI: 97.9%, 100%] for mumps, and 100% [95% CI: 98.6%, 100%] for rubella, which were similar to observed historical rates (seropositivity rates 99% for all three antigens, with lower bound of the 95% CI > 89%) following vaccination with a first dose of M-M-R II in this age group. Data from this study were insufficient to adequately assess the immune response to VARIVAX administered concomitantly with VAQTA. In this same study, the second dose of VAQTA at 18 months of age was given with or without Tripedia (DTaP). Seropositivity rates for diphtheria and tetanus were similar to those in historical controls. However, data from this study were insufficient to assess the pertussis response of DTaP when administered with VAQTA. Rates of seroprotection to hepatitis A were similar between the two groups who received VAQTA with or without M-M-R II and VARIVAX, and between the two groups who received VAQTA with or without DTaP.

Clinical Studies of VAQTA with ProQuad and Prevnar

In the clinical trial of concomitant use of VAQTA with ProQuad and pneumococcal 7-valent conjugate vaccine in children 12 to 15 months of age described in Section 14.2, the antibody GMTs for S. pneumoniae types 4, 6B, 9V, 14, 18C, 19F, and 23F 6 weeks after vaccination with pneumococcal 7-valent conjugate vaccine administered concomitantly with ProQuad and VAQTA were non-inferior as compared to GMTs observed in the group given pneumococcal 7-valent conjugate vaccine with ProQuad alone (the lower bounds of the 95% CI around the fold-difference for the 7 serotypes excluded 0.5). For the varicella component of ProQuad, in subjects with baseline antibody titers < 1.25 gpELISA units/mL, the proportion with a titer ≥ 5 gpELISA units/mL 6 weeks after their first dose of ProQuad was non-inferior (defined as -10 percentage point change) when ProQuad was administered with VAQTA and pneumococcal 7-valent conjugate vaccine as compared to the proportion with a titer ≥ 5 gpELISA units/mL when ProQuad was administered with pneumococcal 7-valent conjugate vaccine alone (difference in seroprotection rate -5.1% [95% CI: -9.3, -1.4%]). Hepatitis A responses were similar when compared between the two groups who received VAQTA with or without ProQuad and pneumococcal 7-valent conjugate vaccine. Seroconversion rates and antibody titers for varicella and S. pneumoniae types 4, 6B, 9V, 14, 18C, 19F, and 23F were similar between groups at 6 weeks postvaccination.

Clinical Studies of VAQTA with INFANRIX and PedvaxHIB

In the clinical trial of concomitant administration of VAQTA with INFANRIX and PedvaxHIB in children 15 months of age, described in Section 14.2, when the first dose of VAQTA was administered concomitantly with either INFANRIX and PedvaxHIB or PedvaxHIB, there was no interference in immune response to hepatitis A as measured by seropositivity rates after dose 2 of VAQTA compared to administration of both doses of VAQTA alone. When dose 1 of VAQTA was administered concomitantly with either PedvaxHIB and INFANRIX or PedvaxHIB, there was no interference in immune response to Haemophilus influenza b (as measured by the proportion of subjects who attained an anti-polyribosylribitol phosphate antibody titer > 1.0 mcg/mL at 4 weeks after vaccination), compared to subjects receiving either PedvaxHIB and INFANRIX or PedvaxHIB. When VAQTA was administered concomitantly with INFANRIX and PedvaxHIB, there was no interference in immune responses at 4 weeks after vaccination to the pertussis antigens (PT, FHA, or pertactin, as measured by GMTs) and no interference in immune responses to diphtheria toxoid or tetanus toxoid (as measured by the proportion of subjects achieving an antibody titer > 0.1 IU/mL) compared to administration of INFANRIX and PedvaxHIB.

Clinical Studies of VAQTA with Typhoid Vi Polysaccharide Vaccine and Yellow Fever Vaccine, Live Attenuated

In the clinical trial of concomitant use of VAQTA with typhoid Vi polysaccharide and yellow fever vaccines in adults 18-54 years of age described in Section 6.1, the antibody response rates for typhoid Vi polysaccharide and yellow fever were adequate when typhoid Vi polysaccharide and yellow fever vaccines were administered concomitantly with (N=80) and nonconcomitantly without VAQTA (N=80). The seropositivity rate for hepatitis A when VAQTA, typhoid Vi polysaccharide, and yellow fever vaccines were administered concomitantly was generally similar to when VAQTA was given alone [see DRUG INTERACTIONS].

Data are insufficient to assess the immune response to VAQTA and poliovirus vaccine when administered concomitantly.

REFERENCES

1 The clinical case definition included all of the following occurring at the same time: 1) one or more typical clinical signs or symptoms of hepatitis A (e.g., jaundice, malaise, fever ≥ 38.3°C); 2) elevation of hepatitis A IgM antibody (HAVAB-M); 3) elevation of alanine transferase (ALT) ≥ 2 times the upper limit of normal.

2 One vaccinee did not meet the pre-defined criteria for clinically confirmed hepatitis A but did have positive hepatitis A IgM and borderline liver enzyme (ALT) elevations on days 34, 50, and 58 after vaccination with mild clinical symptoms observed on days 49 and 50.

Last reviewed on RxList: 8/29/2014
This monograph has been modified to include the generic and brand name in many instances.

A A A

Report Problems to the Food and Drug Administration

 

You are encouraged to report negative side effects of prescription drugs to the FDA. Visit the FDA MedWatch website or call 1-800-FDA-1088.


Living Better

Find the secrets to longer life.


NIH talks about Ebola on WebMD