Vimovo

Vimovo

SIDE EFFECTS

Clinical Trials Experience

Because clinical trials are conducted under widely varying conditions, adverse reaction rates observed in the clinical trials of a drug cannot be directly compared to rates in the clinical trials of another drug and may not reflect the rates observed in practice.

The adverse reactions reported below are specific to the clinical trials with VIMOVO. See also the full prescribing information for naproxen and esomeprazole magnesium products.

The safety of VIMOVO was evaluated in clinical studies involving 2317 patients (aged 27 to 90 years) and ranging from 3-12 months. Patients received either 500 mg/20 mg of VIMOVO twice daily (n=1157), 500 mg of enteric-coated naproxen twice daily (n=426), or placebo (n=246). The average number of VIMOVO doses taken over 12 months was 696+44.

The table below lists all adverse reactions, regardless of causality, occurring in > 2% of patients receiving VIMOVO from two clinical studies (Study 1 and Study 2). Both of these studies were randomized, multi-center, double-blind, parallel studies. The majority of patients were female (67%), white (86%). The majority of patients were 50-69 years of age (83%). Approximately one quarter were on low-dose aspirin.

Table 1: Adverse Reactions occurring in patients > 2% Study 1 and Study 2 (endoscopic studies)

Preferred term (sorted by SOC) VIMOVO 500 mg/20 mg twice daily
(n=428) %
EC-Naproxen 500 mg twice daily
(n=426) %
Gastrointestinal Disorders
Gastritis Erosive 19 38
Dyspepsia 18 27
Gastritis 17 14
Diarrhea 6 5
Gastric Ulcer 6 24
Abdominal Pain Upper 6 9
Nausea 5 5
Hiatus Hernia 4 6
Abdominal Distension 4 4
Flatulence 4 3
Esophagitis 4 8
Constipation 3 3
Abdominal pain 2 2
Erosive Duodenitis 2 12
Abdominal pain lower 2 3
Duodenitis 1 7
Gastritis hemorrhagic 1 2
Gastroesophageal reflux disease < 1 4
Duodenal ulcer < 1 5
Erosive esophagitis < 1 6
Infections and infestations
Upper respiratory tract infection 5 4
Bronchitis 2 2
Urinary tract infection 2 1
Sinusitis 2 2
Nasopharyngitis < 1 2
Musculoskeletal and connective tissue disorders
Arthralgia 1 2
Nervous system disorders
Headache 3 1
Dysgeusia 2 1
Respiratory, thoracic and mediastinal disorders
Cough 2 3

In Study 1 and Study 2, patients taking VIMOVO had fewer premature discontinuations due to adverse reactions compared to patients taking enteric-coated naproxen alone (7.9% vs. 12.5% respectively). The most common reasons for discontinuations due to adverse events in the VIMOVO treatment group were upper abdominal pain (1.2%, n=5), duodenal ulcer (0.7%, n=3) and erosive gastritis (0.7%, n=3). Among patients receiving enteric-coated naproxen, the most common reasons for discontinuations due to adverse events were duodenal ulcer 5.4% (n=23), dyspepsia 2.8% (n=12) and upper abdominal pain 1.2% (n=5). The proportion of patients discontinuing treatment due to any upper gastrointestinal adverse events (including duodenal ulcers) in patients treated with VIMOVO was 4% compared to 12% for patients taking enteric-coated naproxen.

The table below lists all adverse reactions, regardless of causality, occurring in > 2% of patients from 2 clinical studies conducted in patients with osteoarthritis of the knee (Study 3 and Study 4).

Table 2: Adverse Reactions occurring in patients > 2% (Study 3 and Study 4)

Preferred term (sorted by SOC) VIMOVO 500 mg/20 mg twice daily
(n=490) %
Placebo
(n=246) %
Gastrointestinal Disorders
  Dyspepsia 8 12
  Diarrhea 6 4
  Abdominal Pain Upper 4 3
  Constipation 4 1
  Nausea 4 4
Nervous System Disorders
  Dizziness 3 2
  Headache 3 5
General disorders and administration site conditions
  Peripheral edema 3 1
Respiratory, thoracic and mediastinal disorders
  Cough 1 3
Infections and infestations
  Sinusitis 1 2

The percentage of subjects who withdrew from the VIMOVO treatment group in these studies due to treatment-emergent adverse events was 7%. There were no preferred terms in which more than 1% of subjects withdrew from any treatment group.

The long-term safety of VIMOVO was evaluated in an open-label clinical trial of 239 patients, of which 135 patients received 500 mg/20 mg of VIMOVO for 12 months. There were no differences in frequency or types of adverse reactions seen in the long-term safety study compared to shorter-term treatment in the randomized controlled studies.

Postmarketing Experience

Naproxen

The following adverse reactions have been identified during post-approval use of naproxen. Because these reactions are reported voluntarily from a population of uncertain size, it is not always possible to reliably estimate their frequency or establish a causal relationship to drug exposure. These reports are listed below by body system:

Body as a Whole: anaphylactic reactions, angioneurotic edema, menstrual disorders, pyrexia (chills and fever)

Cardiovascular: congestive heart failure, vasculitis, hypertension, pulmonary edema

Gastrointestinal: gastrointestinal bleeding and/or perforation, hematemesis, pancreatitis, vomiting, colitis, exacerbation of inflammatory bowel disease (ulcerative colitis, Crohn's disease), nonpeptic gastrointestinal ulceration, ulcerative stomatitis, esophagitis, peptic ulceration

Hepatobiliary: jaundice, abnormal liver function tests, hepatitis (some cases have been fatal)

Hemic and Lymphatic: eosinophilia, leukopenia, melena, thrombocytopenia, agranulocytosis, granulocytopenia, hemolytic anemia, aplastic anemia

Metabolic and Nutritional: hyperglycemia, hypoglycemia

Nervous System: inability to concentrate, depression, dream abnormalities, insomnia, malaise, myalgia, muscle weakness, aseptic meningitis, cognitive dysfunction, convulsions

Respiratory: eosinophilic pneumonitis, asthma

Dermatologic: alopecia, urticaria, skin rashes, toxic epidermal necrolysis, erythema multiforme, erythema nodosum, fixed drug eruption, lichen planus, pustular reaction, systemic lupus erythematoses, bullous reactions, including Stevens-Johnson syndrome, photosensitive dermatitis, photosensitivity reactions, including rare cases resembling porphyria cutanea tarda (pseudoporphyria) or epidermolysis bullosa. If skin fragility, blistering or other symptoms suggestive of pseudoporphyria occur, treatment should be discontinued and the patient monitored.

Special Senses: hearing impairment, corneal opacity, papillitis, retrobulbar optic neuritis, papilledema

Urogenital: glomerular nephritis, hematuria, hyperkalemia, interstitial nephritis, nephrotic syndrome, renal disease, renal failure, renal papillary necrosis, raised serum creatinine

Reproduction (female): infertility

Esomeprazole

The following adverse reactions have been identified during post-approval use of esomeprazole. Because these reactions are reported voluntarily from a population of uncertain size, it is not always possible to reliably estimate their frequency or establish a causal relationship to drug exposure. These reports are listed below by body system:

Blood and Lymphatic: agranulocytosis, pancytopenia

Eye: blurred vision

Gastrointestinal: pancreatitis; stomatitis; microscopic colitis

Hepatobiliary: hepatic failure, hepatitis with or without jaundice

Immune System: anaphylactic reaction/shock

Infections and Infestations: GI candidiasis, Clostridium difficile associated diarrhea

Metabolism and Nutritional Disorders: hypomagnesemia

Musculoskeletal and Connective Tissue: muscular weakness, myalgia, bone fracture

Nervous System: hepatic encephalopathy, taste disturbance

Psychiatric: aggression, agitation, depression, hallucination

Renal and Urinary: interstitial nephritis

Reproductive System and Breast: gynecomastia

Respiratory, Thoracic, and Mediastinal: bronchospasm

Skin and Subcutaneous Tissue: alopecia, erythema multiforme, hyperhidrosis, photosensitivity, Stevens-Johnson syndrome, toxic epidermal necrolysis (some fatal)

Read the Vimovo (naproxen and esomeprazole magnesium delayed release tablets) Side Effects Center for a complete guide to possible side effects

DRUG INTERACTIONS

Several studies conducted with VIMOVO have shown no interaction between the two components, naproxen and esomeprazole.

ACE-inhibitors

Reports suggest that NSAIDs may diminish the antihypertensive effect of ACE-inhibitors. This interaction should be given consideration in patients taking VIMOVO concomitantly with ACE-inhibitors.

Aspirin

VIMOVO can be administered with low-dose aspirin ( ≤ 325 mg/day) therapy. The concurrent use of aspirin and VIMOVO may increase the risk of serious adverse events [see WARNINGS AND PRECAUTIONS, ADVERSE REACTIONS, and Clinical Studies].

When naproxen is administered with doses of aspirin ( > 1 gram/day), its protein binding is reduced. The clinical significance of this interaction is not known. However, as with other NSAIDs, concomitant administration of naproxen and aspirin is not generally recommended because of the potential of increased adverse effects.

Cholestyramine

As with other NSAIDs, concomitant administration of cholestyramine can delay the absorption of naproxen.

Cyclosporin

As with all NSAIDs caution is advised when cyclosporin is co-administered because of the increased risk of nephrotoxicity.

Tacrolimus

Concomitant administration of esomeprazole, a component of VIMOVO, and tacrolimus may increase the serum levels of tacrolimus.

Diuretics

Clinical studies, as well as postmarketing observations, have shown that NSAIDs can reduce the natriuretic effect of furosemide and thiazides in some patients. This response has been attributed to inhibition of renal prostaglandin synthesis. During concomitant therapy with NSAIDs, the patient should be observed closely both for signs of renal failure, as well as to monitor to assure diuretic efficacy [see WARNINGS AND PRECAUTIONS].

Lithium

NSAIDs have produced an elevation of plasma lithium levels and a reduction in renal lithium clearance. The mean minimum lithium concentration increased 15% and the renal clearance was decreased by approximately 20%. These effects have been attributed to inhibition of renal prostaglandin synthesis by the NSAID. Thus, when NSAIDs and lithium are administered concurrently, subjects should be observed carefully for signs of lithium toxicity.

Methotrexate

NSAIDs have been reported to competitively inhibit methotrexate accumulation in rabbit kidney slices. NSAIDs have been reported to reduce the tubular secretion of methotrexate in an animal model. This may indicate that they could enhance the toxicity of methotrexate. Caution should be used when NSAIDs are administered concomitantly with methotrexate.

Case reports, published population pharmacokinetic studies, and retrospective analyses suggest that concomitant administration of PPIs and methotrexate (primarily at high dose; see methotrexate prescribing information) may elevate and prolong serum levels of methotrexate and/or its metabolite hydroxymethotrexate. However, no formal drug interaction studies of methotrexate with PPIs have been conducted [see WARNINGS AND PRECAUTIONS].

Anticoagulants

Naproxen decreases platelet aggregation and may prolong bleeding time. In addition, because warfarin and NSAIDs are highly protein bound, the free fraction of warfarin and naproxen may increase substantially in some patients.

Concomitant use of VIMOVO and anticoagulants (such as warfarin, dicumarol and heparin) may result in increased risk of bleeding complications.

The effects of warfarin and NSAIDs on GI bleeding are synergistic, such that users of both drugs together have a risk of serious GI bleeding higher than users of either drug alone.

Post-marketing reports of changes in prothrombin measures have been reported among patients on concomitant warfarin and esomeprazole therapy. Increases in INR and prothrombin time may lead to abnormal bleeding and even death. Patients treated with proton pump inhibitors and warfarin concomitantly may need to be monitored for increases in INR and prothrombin time.

Selective Serotonin Reuptake Inhibitors (SSRIs)

There is an increased risk of gastrointestinal bleeding when selective serotonin reuptake inhibitors (SSRIs) are combined with NSAIDs including COX-2 selective inhibitors. Caution should be used when NSAIDs are administered concomitantly with SSRIs [see WARNINGS AND PRECAUTIONS].

Information Concerning Drug Interactions

Naproxen is highly bound to plasma albumin; it thus has a theoretical potential for interaction with other albumin-bound drugs such as sulphonylureas, hydantoins, and other NSAIDs. Patients simultaneously receiving VIMOVO and a hydantoin, sulphonamide or sulphonylurea should be observed for adjustment of dose if required.

Naproxen and other NSAIDs can reduce the antihypertensive effect of propranolol and other beta-blockers.

Probenecid given concurrently increases naproxen anion plasma levels and extends its plasma half-life significantly.

Interactions With Investigations of Neuroendocrine Tumors

Drug-induced decrease in gastric acidity results in enterochromaffin-like cell hyperplasia and increased Chromogranin A levels which may interfere with investigations for neuroendocrine tumors [see WARNINGS AND PRECAUTIONS and Pharmacodynamics].

Drug/Laboratory Test Interaction

Naproxen may decrease platelet aggregation and prolong bleeding time. This effect should be kept in mind when bleeding times are determined.

The administration of naproxen may result in increased urinary values for 17-ketogenic steroids because of an interaction between the drug and/or its metabolites with m-di-nitrobenzene used in this assay. Although 17-hydroxy-corticosteroid measurements (Porter-Silber test) do not appear to be artifactually altered, it is suggested that therapy with naproxen be temporarily discontinued 72 hours before adrenal function tests are performed if the Porter-Silber test is to be used.

Naproxen may interfere with some urinary assays of 5-hydroxy indoleacetic acid (5HIAA).

Interactions Related to Absorption

Esomeprazole inhibits gastric acid secretion. Therefore, esomeprazole may interfere with the absorption of drugs where gastric pH is an important determinant of bioavailability. Like with other drugs that decrease the intragastric acidity, the absorption of drugs such as ketoconazole, iron salts and erlotinib can decrease, while the absorption of drugs such as digoxin can increase during treatment with esomeprazole. Concomitant treatment with omeprazole (20 mg daily) and digoxin in healthy subjects increased the bioavailability of digoxin by 10% (30% in two subjects). Esomeprazole is an enantiomer of omeprazole. Coadministration of digoxin with esomeprazole is expected to increase the systemic exposure of digoxin. Therefore, patients may need to be monitored for increases in digoxin toxicity when digoxin is taken concomitantly with esomeprazole.

Antiretroviral Agents

Concomitant use of atazanavir and nelfinavir with proton pump inhibitors such as esomeprazole is not recommended. Co-administration of atazanavir with proton pump inhibitors is expected to substantially decrease atazanavir plasma concentrations and thereby reduce its therapeutic effect.

Omeprazole, the racemate of esomeprazole, has been reported to interact with some antiretroviral drugs. The clinical importance and the mechanisms behind these interactions are not always known. Increased gastric pH during omeprazole treatment may change the absorption of the antiretroviral drug. Other possible interaction mechanisms are via CYP2C19. For some antiretroviral drugs, such as atazanavir and nelfinavir, decreased serum levels have been reported when given together with omeprazole. Following multiple doses of nelfinavir (1250 mg, twice daily) and omeprazole (40 mg once a day), AUC was decreased by 36% and 92%, Cmax by 37% and 89% and Cmin by 39% and 75% respectively for nelfinavir and main oxidative metabolite, hydroxy-t-butylamide (M8). Following multiple doses of atazanavir (400 mg, once a day) and omeprazole (40 mg, once a day, 2 hr before atazanavir), AUC was decreased by 94%, Cmax by 96%, and Cmin by 95%. Concomitant administration with omeprazole and drugs such as atazanavir and nelfinavir is therefore not recommended. For other antiretroviral drugs, such as saquinavir, elevated serum levels have been reported with an increase in AUC by 82% in Cmax by 75% and in Cmin by 106% following multiple dosing of saquinavir/ritonavir (1000/100 mg) twice a day for 15 days with omeprazole 40 mg once a day co-administered on days 11 to 15. Therefore, clinical and laboratory monitoring for saquinavir toxicity is recommended during concurrent use with esomeprazole. Dose reduction of saquinavir should be considered from the safety perspective for individual patients. There are also some antiretroviral drugs of which unchanged serum levels have been reported when given with omeprazole.

Effects On Hepatic Metabolism/Cytochrome P-450 pathways

Esomeprazole is extensively metabolized in the liver by CYP2C19 and CYP3A4.

In vitro and in vivo studies have shown that esomeprazole is not likely to inhibit CYPs 1A2, 2A6, 2C9, 2D6, 2E1 and 3A4. No clinically relevant interactions with drugs metabolized by these CYP enzymes would be expected. Drug interaction studies have shown that esomeprazole does not have any clinically significant interactions with phenytoin, warfarin, quinidine, clarithromycin or amoxicillin.

However, post-marketing reports of changes in prothrombin measures have been received among patients on concomitant warfarin and esomeprazole therapy. Increases in INR and prothrombin time may lead to abnormal bleeding and even death. Patients treated with proton pump inhibitors and warfarin concomitantly may need to be monitored for increases in INR and prothrombin time.

Esomeprazole may potentially interfere with CYP2C19, the major esomeprazole metabolizing enzyme. Co-administration of esomeprazole 30 mg and diazepam, a CYP2C19 substrate, resulted in a 45% decrease in clearance of diazepam.

Clopidogrel is metabolized to its active metabolite in part by CYP2C19. Concomitant use of esomeprazole 40 mg results in reduced plasma concentrations of the active metabolite of clopidogrel and a reduction in platelet inhibition. Avoid concomitant administration of esomeprazole with clopidogrel. When using esomeprazole, a component of VIMOVO, consider use of alternative anti-platelet therapy [see Pharmacokinetics].

Concomitant administration of esomeprazole and a combined inhibitor of CYP2C19 and CYP3A4, such as voriconazole, may result in more than doubling of the esomeprazole exposure. Dose adjustment of esomeprazole is not normally required. Omeprazole acts as an inhibitor of CYP2C19. Omeprazole, given in doses of 40 mg daily for one week to 20 healthy subjects in cross-over study, increased Cmax and AUC of cilostazol by 18% and 26% respectively. Cmax and AUC of one of its active metabolites, 3,4-dihydrocilostazol, which has 4-7 times the activity of cilostazol, were increased by 29% and 69% respectively. Co-administration of cilostazol with esomeprazole is expected to increase concentrations of cilostazol and its above mentioned active metabolite. Therefore a dose reduction of cilostazol from 100 mg twice daily to 50 mg twice daily should be considered.

Drugs known to induce CYP2C19 or CYP3A4 (such as rifampin) may lead to decreased esomeprazole serum levels. Omeprazole, of which esomeprazole is an enantiomer, has been reported to interact with St. John's Wort, an inducer of CYP3A4. In a cross-over study in 12 healthy male subjects, St John's Wort (300 mg three times daily for 14 days) significantly decreased the systemic exposure of omeprazole in CYP2C19 poor metabolizers (Cmax and AUC decreased by 37.5% and 37.9%, respectively) and extensive metabolizers (Cmax and AUC decreased by 49.6% and 43.9%, respectively). Avoid concomitant use of St. John's Wort or rifampin with VIMOVO.

Other Pharmacokinetic-Based Interactions

Co-administration of oral contraceptives, diazepam, phenytoin, or quinidine does not seem to change the pharmacokinetic profile of esomeprazole.

Read the Vimovo Drug Interactions Center for a complete guide to possible interactions

Last reviewed on RxList: 3/10/2014
This monograph has been modified to include the generic and brand name in many instances.

A A A

Vimovo - User Reviews

Vimovo User Reviews

Now you can gain knowledge and insight about a drug treatment with Patient Discussions.

Here is a collection of user reviews for the medication Vimovo sorted by most helpful. Patient Discussions FAQs

Report Problems to the Food and Drug Administration

 

You are encouraged to report negative side effects of prescription drugs to the FDA. Visit the FDA MedWatch website or call 1-800-FDA-1088.


Arthritis

Get the latest treatment options

advertisement
advertisement
Use Pill Finder Find it Now See Interactions

Pill Identifier on RxList

  • quick, easy,
    pill identification

Find a Local Pharmacy

  • including 24 hour, pharmacies

Interaction Checker

  • Check potential drug interactions
Search the Medical Dictionary for Health Definitions & Medical Abbreviations