Westhroid

CLINICAL PHARMACOLOGY

The steps in the synthesis of the thyroid hormones are controlled by thyrotropin (Thyroid Stimulating Hormone, TSH) secreted by the anterior pituitary. This hormone's secretion is in turn controlled by a feedback mechanism affected by the thyroid hormones themselves and by thyrotropin releasing hormone (TRH), a tripeptide of hypothalamic origin. Endogenous thyroid hormone secretion is suppressed when exogenous thyroid hormones are administered to euthyroid individuals in excess of the normal gland's secretion.

The mechanisms by which thyroid hormones exert their physiologic action are not well understood. These hormones enhance oxygen consumption by most tissues of the body, increase the basal metabolic rate, and the metabolism of carbohydrates, lipids, and proteins. Thus, they exert a profound influence on every organ system in the body and are of particular importance in the development of the central nervous system.

The normal thyroid gland contains approximately 200 mcg of levothyroxine (T4) per gram of gland, and 15 mcg of liothyronine (T3) per gram. The ratio of these two hormones in the circulation does not represent the ratio in the thyroid gland, since about 80 percent of peripheral liothyronine (T3) comes from monodeiodination of levothyroxine (T4). Peripheral monodeiodination of levothyroxine (T4) at the 5 position (inner ring) also results in the formation of reverse liothyronine (T3), which is calorigenically inactive. Liothyronine (T3) levels are low in the fetus and newborn, in old age, in chronic caloric deprivation, hepatic cirrhosis, renal failure, surgical stress, and chronic illnesses representing what has been called the “T3 thyronine syndrome”.

Pharmacokinetics

Animal studies have shown that levothyroxine (T4) is only partially absorbed from the gastrointestinal tract. The degree of absorption is dependent on the vehicle used for its administration and by the character of the intestinal contents, the intestinal flora, including plasma protein, and soluble dietary factors, all of which bind thyroid, thereby making it unavailable for diffusion. Only 41 percent is absorbed when given in a gelatin capsule, as opposed to 74 percent absorption when given with an albumin carrier.

Depending on other factors, absorption has varied from 48 to 79 percent of the administered dose. Fasting increases absorption. Malabsorption syndromes, as well as dietary factors, (children's soybean formula, concomitant use of anionic exchange resins such as cholestyramine) cause excessive fecal loss. Liothyronine (T3) is almost totally absorbed, 95 percent in 4 hours. The hormones contained in the natural preparations are absorbed in a manner similar to the synthetic hormones.

More than 99 percent of circulating hormones are bound to serum proteins, including thyroid-binding globulin (TBg), thyroid-binding pre-albumin (TBPA), and albumin (TBa), whose capacities and affinities vary for the hormones. The higher affinity of levothyroxine (T4) for both TBg and TBPA, as compared to liothyronine (T3), partially explains the higher serum levels and longer half-life of the former hormone. Both protein-bound hormones exist in reverse equilibrium with minute amounts of free hormone, the latter accounting for the metabolic activity. Deiodination of levothyroxine (T4) occurs at a number of sites, including liver, kidney, and other tissues. The conjugated hormone, in the form of glucuronide or sulfate, is found in the bile and gut where it may complete an enterohepatic circulation. Eighty-five percent of levothyroxine (T4) metabolized daily is deiodinated.

Last reviewed on RxList: 11/27/2013
This monograph has been modified to include the generic and brand name in many instances.

A A A

Report Problems to the Food and Drug Administration

 

You are encouraged to report negative side effects of prescription drugs to the FDA. Visit the FDA MedWatch website or call 1-800-FDA-1088.


Women's Health

Find out what women really need.


NIH talks about Ebola on WebMD