Recommended Topic Related To:

Zemplar

"Analysis of three biomarkers in the urine of kidney transplant recipients can diagnose — and even predict — transplant rejection, according to results from a clinical trial sponsored by the National Institute of Allergy and Infect"...

Zemplar Injection

Zemplar Injection

CLINICAL PHARMACOLOGY

Secondary hyperparathyroidism is characterized by an elevation in parathyroid hormone (PTH) associated with inadequate levels of active vitamin D hormone. The source of vitamin D in the body is from synthesis in the skin and from dietary intake. Vitamin D requires two sequential hydroxylations in the liver and the kidney to bind to and to activate the vitamin D receptor (VDR). The endogenous VDR activator, calcitriol [1,25(OH)2 D3], is a hormone that binds to VDRs that are present in the parathyroid gland, intestine, kidney, and bone to maintain parathyroid function and calcium and phosphorus homeostasis, and to VDRs found in many other tissues, including prostate, endothelium and immune cells. VDR activation is essential for the proper formation and maintenance of normal bone. In the diseased kidney, the activation of vitamin D is diminished, resulting in a rise of PTH, subsequently leading to secondary hyperparathyroidism, and disturbances in the calcium and phosphorus homeostasis. The decreased levels of 1,25(OH)2 D3 and resultant elevated PTH levels, both of which often precede abnormalities in serum calcium and phosphorus, affect bone turnover rate and may result in renal osteodystrophy.

Mechanism of Action

Paricalcitol is a synthetic, biologically active vitamin D analog of calcitriol with modifications to the side chain (D2) and the A (19-nor) ring. Preclinical and in vitro studies have demonstrated that paricalcitol's biological actions are mediated through binding of the VDR, which results in the selective activation of vitamin D responsive pathways. Vitamin D and paricalcitol have been shown to reduce parathyroid hormone levels by inhibiting PTH synthesis and secretion.

Pharmacokinetics

Within two hours after administering Zemplar intravenous doses ranging from 0.04 to 0.24 mcg/kg, concentrations of paricalcitol decreased rapidly; thereafter, concentrations of paricalcitol declined log-linearly. No accumulation of paricalcitol was observed with three times a week dosing.

Distribution

Paricalcitol is extensively bound to plasma proteins ( ≥ 99.8%). In healthy subjects, the steady state volume of distribution is approximately 23.8 L. The mean volume of distribution following a 0.24 mcg/kg dose of paricalcitol in CKD Stage 5 subjects requiring hemodialysis (HD) and peritoneal dialysis (PD) is between 31 and 35 L.

Metabolism

After IV administration of a 0.48 mcg/kg dose of 3H-paricalcitol, parent drug was extensively metabolized, with only about 2% of the dose eliminated unchanged in the feces and no parent drug found in the urine. Several metabolites were detected in both the urine and feces. Most of the systemic exposure was from the parent drug. Two minor metabolites, relative to paricalcitol, were detected in human plasma. One metabolite was identified as 24(R)-hydroxy paricalcitol, while the other metabolite was unidentified. The 24(R)-hydroxy paricalcitol is less active than paricalcitol in an in vivo rat model of PTH suppression.

In vitro data suggest that paricalcitol is metabolized by multiple hepatic and non-hepatic enzymes, including mitochondrial CYP24, as well as CYP3A4 and UGT1A4. The identified metabolites include the product of 24(R)-hydroxylation (present at low levels in plasma), as well as 24,26- and 24,28­dihydroxylation and direct glucuronidation.

Elimination

Paricalcitol is excreted primarily by hepatobiliary excretion. Approximately 63% of the radioactivity was eliminated in the feces and 19% was recovered in the urine in healthy subjects. In healthy subjects, the mean elimination half-life of paricalcitol is about five to seven hours over the studied dose range of 0.04 to 0.16 mcg/kg. The pharmacokinetics of paricalcitol has been studied in CKD Stage 5 subjects requiring hemodialysis (HD) and peritoneal dialysis (PD). The mean elimination half-life of paricalcitol after administration of 0.24 mcg/kg paricalcitol IV bolus dose in CKD Stage 5 HD and PD patients is 13.9 and 15.4 hours, respectively (Table 1).

Table 1 : Mean ± SD Paricalcitol Pharmacokinetic Parameters in CKD Stage 5 Subjects Following Single 0.24 mcg/kg IV Bolus Dose

  CKD Stage 5-HD
(n=14)
CKD Stage 5-PD
(n=8)
Cmax (ng/mL) 1.680 ± 0.511 1.832 ± 0.315
AUC0-∞ (ng•h/mL) 14.51 ± 4.12 16.01 ± 5.98
β (1/h) 0.050 ± 0.023 0.045 ± 0.026
t½ (h) † 13.9 ± 7.3 15.4 ± 10.5
CL (L/h) 1.49 ± 0.60 1.54 ± 0.95
Vdβ (L) 30.8 ± 7.5 34.9 ± 9.5
† harmonic mean ± pseudo standard deviation, HD: hemodialysis, PD: peritoneal dialysis

No accumulation of paricalcitol was observed with three times a week dosing which is consistent with the observed half-life.

Special Populations

Geriatric

The pharmacokinetics of paricalcitol have not been investigated in geriatric patients greater than 65 years.

Pediatrics

The pharmacokinetics of paricalcitol have not been investigated in patients less than 18 years of age.

Gender

The pharmacokinetics of paricalcitol were gender independent.

Hepatic Impairment

The disposition of paricalcitol (0.24 mcg/kg) was compared in patients with mild (n=5) and moderate (n=5) hepatic impairment (as indicated by the Child-Pugh method) and subjects with normal hepatic function (n=10). The pharmacokinetics of unbound paricalcitol were similar across the range of hepatic function evaluated in this study. No dose adjustment is required in patients with mild and moderate hepatic impairment. The influence of severe hepatic impairment on the pharmacokinetics of paricalcitol has not been evaluated.

Renal Impairment

The pharmacokinetics of paricalcitol have been studied in CKD Stage 5 subjects requiring hemodialysis (HD) and peritoneal dialysis (PD). Hemodialysis procedure has essentially no effect on paricalcitol elimination. However, compared to healthy subjects, CKD Stage 5 subjects showed a decreased CL and increased half-life (see Pharmacokinetics - Elimination).

Drug Interactions

An in vitro study indicates that paricalcitol is not an inhibitor of CYP1A2, CYP2A6, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP2E1, or CYP3A at concentrations up to 50 nM (21 ng/mL) (approximately 20-fold greater than that obtained after highest tested dose). In fresh primary cultured hepatocytes, the induction observed at paricalcitol concentrations up to 50 nM was less than two-fold for CYP2B6, CYP2C9 or CYP3A, where the positive controls rendered a six- to nineteen-fold induction. Hence, paricalcitol is not expected to inhibit or induce the clearance of drugs metabolized by these enzymes.

Drug interactions with paricalcitol injection have not been studied.

Omeprazole

The pharmacokinetic interaction between paricalcitol capsule (16 mcg) and omeprazole (40 mg; oral), a strong inhibitor of CYP2C19, was investigated in a single dose, crossover study in healthy subjects. The pharmacokinetics of paricalcitol were unaffected when omeprazole was administrated approximately 2 hours prior to the paricalcitol dose.

Ketoconazole

Although no data are available for the drug interaction between paricalcitol injection and ketoconazole, a strong inhibitor of CYP3A, the effect of multiple doses of ketoconazole administered as 200 mg BID for 5 days on the pharmacokinetics of paricalcitol capsule has been studied in healthy subjects. The Cmax of paricalcitol was minimally affected, but AUC0-∞ approximately doubled in the presence of ketoconazole. The mean half-life of paricalcitol was 17.0 hours in the presence of ketoconazole as compared to 9.8 hours, when paricalcitol was administered alone (See PRECAUTIONS ).

Clinical Studies

In three 12-week, placebo-controlled, phase 3 studies in chronic kidney disease Stage 5 patients on dialysis, the dose of Zemplar was started at 0.04 mcg/kg 3 times per week. The dose was increased by 0.04 mcg/kg every 2 weeks until intact parathyroid hormone (iPTH) levels were decreased at least 30% from baseline or a fifth escalation brought the dose to 0.24 mcg/kg, or iPTH fell to less than 100 pg/mL, or the Ca × P product was greater than 75 within any 2 week period, or serum calcium became greater than 11.5 mg/dL at any time.

Patients treated with Zemplar achieved a mean iPTH reduction of 30% within 6 weeks. In these studies, there was no significant difference in the incidence of hypercalcemia or hyperphosphatemia between Zemplar and placebo-treated patients. The results from these studies are as follows:

  Group (No. of Pts.) Baseline Mean (Range) Mean (SE) Change From Baseline to Final Evaluation
PTH (pg/mL) Zemplar (n =40 783 (291 –2076) -379 (43.7)
Alkaline placebo (n =38 745 (320 –1671) -69.6 (44.8)
Phosphatase Zemplar (n =31 150 (40 – 600) -41.5 (10.6)
(U/L) placebo (n =34 169 (56 – 911) +2.6 (10.1)
Calcium (mg/dL) Zemplar (n =40 9.3 (7.2 –10.4) +0.47 (0.1)
Phosphorus placebo (n =38 9.1 (7.8 –10.7) +0.02 (0.1)
(mg/dL) Zemplar (n =40 5.8 (3.7 –10.2) +0.47 (0.3)
Calcium × placebo (n =38 6.0 (2.8 – 8.8) -0.47 (0.3)
Phosphorus Zemplar (n =40 54 (32 – 106) +7.9 (2.2)
Product placebo (n =38 54 (26 – 77) -3.9 (2.3)

A long-term, open-label safety study of 164 CKD Stage 5 patients (mean dose of 7.5 mcg three times per week), demonstrated that mean serum Ca, P, and Ca × P remained within clinically appropriate ranges with PTH reduction (mean decrease of 319 pg/mL at 13 months).

Mean serum Ca, P, and Ca × P - Illustration

Last reviewed on RxList: 5/20/2011
This monograph has been modified to include the generic and brand name in many instances.

A A A

Zemplar Injection - User Reviews

Zemplar Injection User Reviews

Now you can gain knowledge and insight about a drug treatment with Patient Discussions.

Here is a collection of user reviews for the medication Zemplar Injection sorted by most helpful. Patient Discussions FAQs

Report Problems to the Food and Drug Administration

 

You are encouraged to report negative side effects of prescription drugs to the FDA. Visit the FDA MedWatch website or call 1-800-FDA-1088.


Women's Health

Find out what women really need.

Related Supplements
advertisement
advertisement
Use Pill Finder Find it Now See Interactions

Pill Identifier on RxList

  • quick, easy,
    pill identification

Find a Local Pharmacy

  • including 24 hour, pharmacies

Interaction Checker

  • Check potential drug interactions
Search the Medical Dictionary for Health Definitions & Medical Abbreviations