Recommended Topic Related To:

Zithromax Injection

"The Ministry of Health (MoH) of Guinea reported on April 5, 2014, a total of 151 probable and suspect cases, including 95 deaths (case fatality ratio: 63%). Of these suspect cases, 52 have been laboratory confirmed positive cases of Ebola hemo"...

Zithromax Injection

CLINICAL PHARMACOLOGY

Pharmacokinetics

In patients hospitalized with community-acquired pneumonia receiving single daily one-hour intravenous infusions for 2 to 5 days of 500-mg azithromycin at a concentration of 2 mg/mL, the mean Cmax ± S.D. achieved was 3.63 ± 1.60 μg/mL, while the 24-hour trough level was 0.20 ± 0.15 μg/mL, and the AUC24 was 9.60 ± 4.80 μg·h/mL.

The mean Cmax, 24-hour trough and AUC24 values were 1.14 ± 0.14 μg/mL, 0.18 ± 0.02 μg/mL, and 8.03 ±0.86 μg•h/mL, respectively, in normal volunteers receiving a 3-hour intravenous infusion of 500 mg azithromycin at a concentration of 1 mg/mL. Similar pharmacokinetic values were obtained in patients hospitalized with community-acquired pneumonia who received the same 3-hour dosage regimen for 2-5 days.

Plasma concentrations (μg/mL ± S.D.) after the last daily intravenous infusion of 500 mg azithromycin

Infusion Concentration, Duration Time after starting the infusion(hr)
0.5 1 2 3 4 6 8 12 24
2 mg/mL, 1 hra 2.98±1.12 3.63±1.73 0.60±0.31 0.40±0.23 0.33±0.16 0.26±0.14 0.27±0.15 0.20±0.12 0.20±0.15
1 mg/mL, 3 hrb 0.91±0.13 1.02±0.11 1.14±0.13 1.13±0.16 0.32±0.05 0.28±0.04 0.27±0.03 0.22±0.02 0.18±0.02
a 500 mg (2 mg/mL) for 2-5 days in community-acquired pneumonia patients.
b 500 mg (1 mg/mL) for 5 days in healthy subjects.

The average CLt and Vd values were 10.18 mL/min/kg and 33.3 L/kg, respectively, in 18 normal volunteers receiving 1000 to 4000-mg doses given as 1 mg/mL over 2 hours.

Comparison of the plasma pharmacokinetic parameters following the 1st and 5th daily doses of 500 mg intravenous azithromycin showed only an 8% increase in Cmax but a 61% increase in AUC24 reflecting a threefold rise in C24 trough levels.

Following single oral doses of 500-mg azithromycin (two 250-mg capsules) to 12 healthy volunteers, Cmax, trough level, and AUC24 were reported to be 0.41 μg/mL, 0.05 μg/mL, and 2.6 μg•h/mL, respectively. These oral values are approximately 38%, 83%, and 52% of the values observed following a single 500-mg I.V. 3-hour infusion (Cmax: 1.08 μg/mL, trough: 0.06 μg/mL, and AUC24: 5.0 μg•h/mL). Thus, plasma concentrations are higher following the intravenous regimen throughout the 24-hour interval. The pharmacokinetic parameters on day 5 of azithromycin 250-mg capsules following a 500-mg oral loading dose to healthy young adults (age 18-40 years old) were as follows: Cmax: 0.24 μg/mL, AUC24: 2.1 μg•h/mL. Azithromycin 250-mg capsules are no longer commercially available. Azithromycin 250-mg tablets are bioequivalent to 250-mg capsules in the fasting state.

Median azithromycin exposure (AUC0-288) in mononuclear (MN) and polymorphonuclear (PMN) leukocytes following 1,500 mg of oral azithromycin, administered in single daily doses over either 5 days (two 250-mg tablets on day 1, followed by one 250-mg tablet on days 2-5) or 3 days (500 mg per day for days 1-3) to 12 healthy volunteers, was more than a 1000-fold and 800fold greater than in serum, respectively.

Distribution

The serum protein binding of azithromycin is variable in the concentration range approximating human exposure, decreasing from 51% at 0.02 μg/mL to 7% at 2 μg/mL.

Tissue concentrations have not been obtained following intravenous infusions of azithromycin. Selected tissue (or fluid) concentration and tissue (or fluid) to plasma/serum concentration ratios following oral administration of azithromycin are shown in the following table:

AZITHROMYCIN CONCENTRATIONS FOLLOWING A 500-mg DOSE (TWO-250 mg CAPSULES) IN ADULTS

TISSUE OR FLUID TIME AFTER DOSE (h) TISSUE OR FLUID CONCENTRATION (μg/g or g/mL)1 CORRESPONDING PLASMA OR SERUM LEVEL (μg/mL) TISSUE (FLUID) PLASMA (SERUM) RATIO1
SKIN 72-96 0.4 0.012 35
LUNG 72-96 4.0 0.012 > 100
SPUTUM* 2-4 1.0 0.64 2
SPUTUM** 10-12 2.9 0.1 30
TONSIL*** 9-18 4.5 0.03 > 100
TONSIL*** 180 0.9 0.006 > 100
CERVIX**** 19 2.8 0.04 70
1High tissue concentrations should not be interpreted to be quantitatively related to clinical efficacy. The antimicrobial activity of azithromycin is pH related and appears to be reduced with decreasing pH. However, the extensive distribution of drug to tissues may be relevant to clinical activity.
* Sample was obtained 2-4 hours after the first dose.
** Sample was obtained 10-12 hours after the first dose.
*** Dosing regimen of 2 doses of 250 mg each, separated by 12 hours.
**** Sample was obtained 19 hours after a single 500-mg dose.

Tissue levels were determined following a single oral dose of 500-mg azithromycin in 7 gynecological patients. Approximately 17 hours after dosing, azithromycin concentrations were 2.7 μg/g in ovarian tissue, 3.5 μg/g in uterine tissue, and 3.3 μg/g in salpinx. Following a regimen of 500 mg on the first day followed by 250 mg daily for 4 days, concentrations in the cerebrospinal fluid were less than 0.01 μg/mL in the presence of non-inflamed meninges.

Metabolism

In vitro and in vivo studies to assess the metabolism of azithromycin have not been performed.

Elimination

Plasma concentrations of azithromycin following single 500-mg oral and i.v. doses declined in a polyphasic pattern with a mean apparent plasma clearance of 630 mL/min and terminal elimination half-life of 68 hours. The prolonged terminal half-life is thought to be due to extensive uptake and subsequent release of drug from tissues.

In a multiple-dose study in 12 normal volunteers utilizing a 500-mg (1 mg/mL) one-hour intravenous-dosage regimen for five days, the amount of administered azithromycin dose excreted in urine in 24 hours was about 11% after the 1st dose and 14% after the 5th dose. These values are greater than the reported 6% excreted unchanged in urine after oral administration of azithromycin. Biliary excretion is a major route of elimination for unchanged drug, following oral administration.

Special Populations

Renal Insufficiency

Azithromycin pharmacokinetics were investigated in 42 adults (21 to 85 years of age) with varying degrees of renal impairment. Following the oral administration of a single 1,000-mg dose of azithromycin, mean Cmax and AUC0-120 increased by 5.1% and 4.2%, respectively in subjects with mild to moderate renal impairment (GFR 10 to 80 mL/min) compared to subjects with normal renal function (GFR > 80 mL/min). The mean Cmax and AUC0-120 increased 61% and 35%, respectively in subjects with severe renal impairment (GFR < 10 mL/min) compared to subjects with normal renal function (GFR > 80 mL/min). (See DOSAGE AND ADMINISTRATION.)

Hepatic Insufficiency

The pharmacokinetics of azithromycin in subjects with hepatic impairment has not been established.

Gender

There are no significant differences in the disposition of azithromycin between male and female subjects. No dosage adjustment is recommended based on gender.

Geriatric Patients

Pharmacokinetic studies with intravenous azithromycin have not been performed in older volunteers. Pharmacokinetics of azithromycin following oral administration in older volunteers (65-85 years old) were similar to those in younger volunteers (18-40 years old) for the 5-day therapeutic regimen.

Pediatric Patients

Pharmacokinetic studies with intravenous azithromycin have not been performed in children.

Drug-Drug Interactions

Drug interaction studies were performed with oral azithromycin and other drugs likely to be coadministered. The effects of co-administration of azithromycin on the pharmacokinetics of other drugs are shown in Table 1 and the effects of other drugs on the pharmacokinetics of azithromycin are shown in Table 2.

Co-administration of azithromycin at therapeutic doses had a modest effect on the pharmacokinetics of the drugs listed in Table 1. No dosage adjustment of drugs listed in Table 1 is recommended when co-administered with azithromycin.

Co-administration of azithromycin with efavirenz or fluconazole had a modest effect on the pharmacokinetics of azithromycin. Nelfinavir significantly increased the Cmax and AUC of azithromycin. No dosage adjustment of azithromycin is recommended when administered with drugs listed in Table 2. (See PRECAUTIONS - DRUG INTERACTIONS.)

Table 1: Drug Interactions: Pharmacokinetic Parameters for Co-administered Drugs in the Presence of Azithromycin

Co-administered Drug Dose of Co-administered Drug Dose of Azithromycin n Ratio (with/without azithromycin) of Co-administered Drug Pharmacokinetic Parameters (90% CI); No Effect = 1.00
Mean Cmax Mean AUC
Atorvastatin 10 mg/day 8 days 500 mg/day PO on days 6-8 12 0.83
(0.63 to 1.08)
1.01
(0.81 to 1.25)
Carbamazepine 200 mg/day 2 days, then 200mg BID 18 days 500 mg/day PO for days 16-18 7 0.97
(0.88 to 1.06)
0.96
(0.88 to 1.06)
Cetirizine 20 mg/day 11 days 500 mg PO on day 7, then 250 mg/day on days 8-11 14 1.03
(0.93 to 1.14)
1.02
(0.92 to 1.13)
Didanosine 200 mg PO BID 21 days 1,200 mg/day PO on days 8-21 6 1.44
(0.85 to 2.43)
1.14
(0.83 to 1.57)
Efavirenz 400 mg/day 7 days 600 mg PO on day 7 14 1.04* 0.95*
Fluconazole 200 mg PO single dose 1,200 mg PO single dose 18 1.04
(0.98 to 1.11)
1.01
(0.97 to 1.05)
Indinavir 800 mg TID 5 days 1,200 mg PO on day 5 18 0.96
(0.86 to 1.08)
0.90
(0.81 to 1.00)
Midazolam 15 mg PO on day 3 500 mg/day PO 3 days 12 1.27
(0.89 to 1.81)
1.26
(1.01 to 1.56)
Nelfinavir 750 mg TID 11 days 1,200 mg PO on day 9 14 0.90
(0.81 to 1.01)
0.85
(0.78 to 0.93)
Rifabutin 300 mg/day 10 days 500 mg PO on day 1, then 250 mg/day on days 2-10 6 See footnote below NA
Sildenafil 100 mg on days 1 and 4 500 mg/day PO 3 days 12 1.16
(0.86 to 1.57)
0.92
(0.75 to 1.12)
Theophylline 4 mg/kg IV on days 1, 11 , 25 500 mg PO on day 7, 250 mg/day on days 8-11 10 1.19
(1.02 to 1.40)
1.02
(0.86 to 1.22)
Theophylline 300 mg PO BID x 15 days 500 mg PO on day 6, then 250 mg/day on days 7-10 8 1.09
(0.92 to 1.29)
1.08
(0.89 to 1.31)
Triazolam 0.125 mg on day 2 500 mg PO on day 1, then 250 mg/day on day 2 12 1.06* 1.02*
Trimethoprim /Sulfamethoxazole 160 mg/800 mg/day PO 7 days 1,200 mg PO on day 7 12 0.85
(0.75 to 0.97)/ 0.90
(0.78 to 1.03)
0.87
(0.80 to 0.95 /0.96
(0.88 to 1.03)
Zidovudine 500 mg/day PO x 21 days 600 mg/day PO 14 days 5 1.12
(0.42 to 3.02)
0.94
(0.52 to 1.70)
Zidovudine 500 mg/day PO x 21 days 1,200 mg/day PO 14 days 4 1.31
(0.43 to 3.97)
1.30
(0.69 to 2.43)
Efavirenz 400 mg/day 7 days 600 mg PO on day 7 14 1.22
(1.04 to 1.42)
0.92*
Fluconazole 200 mg PO single dose 1,200 mg PO single dose 18 0.82
(0.66 to 1.02)
1.07
(0.94 to 1.22)
Nelfinavir 750 mg TID 11 days 1,200 mg PO on day 9 14 2.36
(1.77 to 3.15)
2.12
(1.80 to 2.50)
Rifabutin 300 mg/day 10 days 500 mg PO on day 1, then 250 mg/day on days 2-10 6 See footnote below NA
NA -Not Available
* - 90% Confidence interval not reported
Mean rifabutin concentrations one-half day after the last dose of rifabutin were 60 ng/mL when co-administered with azithromycin and 71 ng/mL when co-administered with placebo.

Table 2: Drug Interactions: Pharmacokinetic Parameters for Azithromycin in the Presence of Co-administered Drugs (See PRECAUTIONS - DRUG INTERACTIONS.)

Co-administered Drug Dose of Co-administered Drug Dose of Azithromycin n Ratio (with/without co-administered drug) of Azithromycin Pharmacokinetic Parameters (90% CI); No Effect = 1.00
Mean Cmax Mean AUC
Efavirenz 400 mg/day 7 days 600 mg PO on day 7 14 1.22
(1.04 to 1.42)
0.92*
Fluconazole 200 mg PO single dose 1,200 mg PO single dose 18 0.82
(0.66 to 1.02)
1.07
(0.94 to 1.22)
Nelfinavir 750 mg TID 11 days 1,200 mg PO on day 9 14 2.36
(1.77 to 3.15)
2.12
(1.80 to 2.50)
Rifabutin 300 mg/day 10 days 500 mg PO on day 1, then 250 mg/day on days 2-10 6 See footnote below NA
NA – Not available
* - 90% Confidence interval not reported
Mean azithromycin concentrations one day after the last dose were 53 ng/mL when co-administered with 300 mg daily rifabutin and 49 ng/mL when co-administered with placebo.

Microbiology

Azithromycin acts by binding to the 50S ribosomal subunit of susceptible microorganisms and, thus, interfering with microbial protein synthesis. Nucleic acid synthesis is not affected.

Azithromycin concentrates in phagocytes and fibroblasts as demonstrated by in vitro incubation techniques. Using such methodology, the ratio of intracellular to extra-cellular concentration was > 30 after one hour incubation. In vivo studies suggest that concentration in phagocytes may contribute to drug distribution to inflamed tissues.

Azithromycin has been shown to be active against most isolates of the following microorganisms, both in vitro and in clinical infections as described in the INDICATIONS AND USAGE section of the package insert for ZITHROMAX (azithromycin for injection).

Aerobic and facultative gram-positive microorganisms

Staphylococcus aureus
Streptococcus pneumoniae

NOTE: Azithromycin demonstrates cross-resistance with erythromycin-resistant gram-positive strains. Most strains of Enterococcus faecalis and methicillin-resistant staphylococci are resistant to azithromycin.

Aerobic and facultative gram-negative microorganisms

Haemophilus influenzae
Moraxella catarrhalis

Neisseria gonorrhoeae

“Other” microorganisms

Chlamydia pneumoniae
Chlamydia trachomatis

Legionella pneumophila

Mycoplasma hominis

Mycoplasma pneumoniae

Beta-lactamase production should have no effect on azithromycin activity.

Azithromycin has been shown to be active against most strains of the following microorganisms, both in vitro and in clinical infections as described in the INDICATIONS AND USAGE section of the package insert for ZITHROMAX (azithromycin tablets) and ZITHROMAX (azithromycin for oral suspension).

Aerobic and facultative gram-positive microorganisms

Staphylococcus aureus
Streptococcus agalactiae

Streptococcus pneumoniae

Streptococcus pyogenes

Aerobic and facultative gram-negative microorganisms

Haemophilus ducreyi
Haemophilus influenzae

Moraxella catarrhalis

Neisseria gonorrhoeae

“Other” microorganisms

Chlamydia pneumoniae
Chlamydia trachomatis

Mycoplasma pneumoniae

Beta-lactamase production should have no effect on azithromycin activity.

The following in vitro data are available, but their clinical significance is unknown.

At least 90% of the following microorganisms exhibit an in vitro minimum inhibitory concentration (MIC) less than or equal to the susceptible breakpoints for azithromycin. However, the safety and effectiveness of azithromycin in treating clinical infections due to these microorganisms have not been established in adequate and well-controlled clinical trials.

Aerobic and facultative gram-positive microorganisms

Streptococci (Groups C, F, G)
Viridans group streptococci

Aerobic and facultative gram-negative microorganisms

Bordetella pertussis

Anaerobic microorganisms

Peptostreptococcus species
Prevotella bivia

“Other” microorganisms

Ureaplasma urealyticum

Beta-lactamase production should have no effect on azithromycin activity.

Susceptibility Testing Methods

When available, the results of in vitro susceptibility test results for antimicrobial drugs used in resident hospitals should be provided to the physician as periodic reports which describe the susceptibility profile of nosocomial and community-acquired pathogens. These reports may differ from susceptibility data obtained from outpatient use, but could aid the physician in selecting the most effective antimicrobial.

Dilution techniques

Quantitative methods are used to determine antimicrobial minimum inhibitory concentrations (MICs). These MICs provide estimates of the susceptibility of bacteria to antimicrobial compounds. The MICs should be determined using a standardized procedure. Standardized procedures are based on a dilution method1,3 (broth or agar) or equivalent with standardized inoculum concentrations and standardized concentrations of azithromycin powder. The MIC values should be interpreted according to criteria provided in Table 3.

Diffusion techniques

Quantitative methods that require measurement of zone diameters also provide reproducible estimates of the susceptibility of bacteria to antimicrobial compounds. One such standardized procedure2,3 requires the use of standardized inoculum concentrations. This procedure uses paper disks impregnated with 15-μg azithromycin to test the susceptibility of microorganisms to azithromycin. The disk diffusion interpretive criteria are provided in Table 3.

Table 3: Susceptibility Interpretive Criteria for Azithromycin Susceptibility Test Result Interpretive Criteria

Pathogen Minimum Inhibitory Disk Diffusion
Concentrations (μg/mL) (zone diameters in mm)
S I Ra S I Ra
Haemophilus influenzae ≤ 4 -- -- ≥ 12 -- --
Staphylococcus aureus ≤ 2 4 ≥ 8 ≥ 18 14-17 ≤ 13
Streptococcus pneumoniae ≤ 0.5 1 ≥ 2 ≥ 18 14-17 ≤ 13
aThe current absence of data on resistant strains precludes defining any category other than “susceptible”. If strains yield MIC results other than susceptible, they should be submitted to a reference laboratory for further testing.
b Susceptibility of streptococci including, S. pneumoniae to azithromycin and other macrolides can be predicted by testing erythromycin.
No interpretive criteria have been established for testing Neisseria gonorrhoeae. This species is not usually tested.

A report of “susceptible” indicates that the pathogen is likely to be inhibited if the antimicrobial compound reaches the concentrations usually achievable. A report of “intermediate” indicates that the result should be considered equivocal, and, if the microorganism is not fully susceptible to alternative, clinically feasible drugs, the test should be repeated. This category implies possible clinical applicability in body sites where the drug is physiologically concentrated or in situations where high dosage of drug can be used. This category also provides a buffer zone which prevents small uncontrolled technical factors from causing major discrepancies in interpretation. A report of “resistant” indicates that the pathogen is not likely to be inhibited if the antimicrobial compound reaches the concentrations usually achievable; other therapy should be selected.

Quality Control

Standardized susceptibility test procedures require the use of quality control microorganisms to control the technical aspects of the test procedures. Standard azithromycin powder should provide the following range of values noted in Table 4. Quality control microorganisms are specific strains of organisms with intrinsic biological properties. QC strains are very stable strains which will give a standard and repeatable susceptibility pattern. The specific strains used for microbiological quality control are not clinically significant.

Table 4: Acceptable Quality Control Ranges for Azithromycin

QC Strain Minimum Inhibitory Concentrations (μg/mL) Disk Diffusion (zone diameters in mm)
Haemophilus influenzae ATCC 49247 1.0-4.0 13-21
Staphylococcus aureus ATCC 29213 0.5-2.0  
Staphylococcus aureus ATCC 25923   21-26
Streptococcus pneumoniae ATCC 49619 0.06-0.25 19-25

Clinical Studies

Community-Acquired Pneumonia

In a controlled study of community-acquired pneumonia performed in the U.S., azithromycin (500 mg as a single daily dose by the intravenous route for 2-5 days, followed by 500 mg/day by the oral route to complete 7-10 days therapy) was compared to cefuroxime (2250 mg/day in three divided doses by the intravenous route for 2-5 days followed by 1000 mg/day in two divided doses by the oral route to complete 7-10 days therapy), with or without erythromycin. For the 291 patients who were evaluable for clinical efficacy, the clinical outcome rates, i.e., cure, improved, and success (cure + improved) among the 277 patients seen at 10-14 days post-therapy were as follows:

Clinical Outcome Azithromycin Comparator
Cure 46% 44%
Improved 32% 30%
Success (Cure + Improved) 78% 74%

In a separate, uncontrolled clinical and microbiological trial performed in the U.S., 94 patients with community-acquired pneumonia who received azithromycin in the same regimen were evaluable for clinical efficacy. The clinical outcome rates, i.e., cure, improved, and success (cure + improved) among the 84 patients seen at 10-14 days post-therapy were as follows:

Clinical Outcome Azithromycin
Cure 60%
Improved 29%
Success (Cure + Improved) 89%

Microbiological determinations in both trials were made at the pre-treatment visit and, where applicable, were reassessed at later visits. Serological testing was done on baseline and final visit specimens. The following combined presumptive bacteriological eradication rates were obtained from the evaluable groups:

Combined Bacteriological Eradication Rates for Azithromycin:

(at last completed visit) Azithromycin
S. pneumoniae 64/67 (96%)a
H. influenzae 41/43 (95%)
M. catarrhalis 9/10
S. aureus 9/10
a Nineteen of twenty-four patients (79%) with positive blood cultures for S. pneumoniae were cured (intent-to-treat analysis) with eradication of the pathogen.

The presumed bacteriological outcomes at 10-14 days post-therapy for patients treated with azithromycin with evidence (serology and/or culture) of atypical pathogens for both trials were as follows:

Evidence of Infection Total Cure Improved Cure + Improved
Mycoplasma pneumoniae 18 11 (61%) 5 (28%) 16 (89%)
Chlamydia pneumoniae 34 15 (44%) 13 (38%) 28 (82%)
Legionella pneumophila 16 5 (31%) 8 (50%) 13 (81%)

Animal Toxicology

Phospholipidosis (intracellular phospholipid accumulation) has been observed in some tissues of mice, rats, and dogs given multiple doses of azithromycin. It has been demonstrated in numerous organ systems (e.g., eye, dorsal root ganglia, liver, gallbladder, kidney, spleen, and pancreas) in dogs treated with azithromycin at doses which, expressed on the basis of mg/m², are approximately equal to the recommended adult human dose, and in rats treated at doses approximately one-sixth of the recommended adult human dose. This effect has been shown to be reversible after cessation of azithromycin treatment. Phospholipidosis has been observed to a similar extent in the tissues of neonatal rats and dogs given daily doses of azithromycin ranging from 10 days to 30 days. Based on the pharmacokinetic data, phospholipidosis has been seen in the rat (30 mg/kg dose) at observed Cmax value of 1.3 μg/mL (six times greater than the observed Cmax of 0.216 μg/mL at the pediatric dose of 10 mg/kg). Similarly, it has been shown in the dog (10 mg/kg dose) at observed Cmax value of 1.5 μg/mL (seven times greater than the observed same Cmax and drug dose in the studied pediatric population). On a mg/m² basis, 30 mg/kg dose in the neonatal rat (135 mg/m²) and 10 mg/kg dose in the neonatal dog (79 mg/m²) are approximately 0.45 and 0.3 times, respectively, the recommended dose in the pediatric patients with an average body weight of 25 kg. Phospholipidosis, similar to that seen in the adult animals, is reversible after cessation of azithromycin treatment. The significance of these findings for animals and for humans is unknown.

REFERENCES

1. Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing; 21st Informational Supplement. CLSI document M100-S21. (ISBN 1-56238-742-1). CLSI, 940 West Valley Road, Suite 1400, Wayne, PA, 19087-1898 USA. 2011

2. Clinical and Laboratory Standards Institute. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically; Approved Standard - 8th ed. CLSI document M07-A8. (ISBN 1-56238-689-1). CLSI, 940 West Valley Road, Suite 1400, Wayne, PA, 19087-1898 USA. 2009.

3. Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Disk Susceptibility Tests; Approved Standard - 10th ed. CLSI document M02-A10. (ISBN 1-56238-688-3). CLSI, 940 West Valley Road, Suite 1400, Wayne, PA, 190871898 USA. 2009

Last reviewed on RxList: 12/6/2011
This monograph has been modified to include the generic and brand name in many instances.

A A A

Zithromax Injection - User Reviews

Zithromax Injection User Reviews

Now you can gain knowledge and insight about a drug treatment with Patient Discussions.

Here is a collection of user reviews for the medication Zithromax Injection sorted by most helpful. Patient Discussions FAQs

Report Problems to the Food and Drug Administration

 

You are encouraged to report negative side effects of prescription drugs to the FDA. Visit the FDA MedWatch website or call 1-800-FDA-1088.


Women's Health

Find out what women really need.