Slideshows Images Quizzes

Copyright © 2018 by RxList Inc. RxList does not provide medical advice, diagnosis or treatment. See additional information.

Spleen Extract

Reviewed on 9/17/2019

What other names is Spleen Extract known by?

Bovine Spleen, Concentré de Rate, Extracto de Bazo, Extrait de Rate, Extrait de Rate Hydrolysé, Extrait Splénique, Extrait Splénique Prédigéré, Facteurs Spléniques, Hydrolyzed Spleen Extract, Predigested Spleen Extract, Rate Bovine, Rate Crue, Raw Spleen, Spleen, Spleen Concentrate, Spleen Factors, Spleen Peptides, Spleen Polypeptides, Splenopentin, Tuftsin.

What is Spleen Extract?

The spleen is an organ in people and animals that has three major jobs. First, it breaks down and removes old and damaged red blood cells. It also holds a reserve of blood that can be released into the circulatory system to meet a sudden demand, such as bleeding (hemorrhage). It also provides some white cells to fight infection. Spleen extract is produced from animal spleens and is used as medicine.

Spleen extract is given “as replacement therapy” in cases where the spleen has been surgically removed and or isn't working properly.

People with low white blood cell counts, cancer, infections, or HIV-related infections take spleen extract to boost the immune system.

Spleen extract is also used for treating “autoimmune” diseases such as celiac disease, systemic lupus erythematosus (SLE), dermatitis herpetiformis, and rheumatoid arthritis.

Some people use spleen extract for a kidney disorder called glomerulonephritis, a blood disorder called thrombocytopenia, an intestinal disease called ulcerative colitis, and a blood vessel condition called vasculitis.


Next to red peppers, you can get the most vitamin C from ________________. See Answer

Insufficient Evidence to Rate Effectiveness for...

  • Replacement therapy in cases where the spleen has been removed or isn’t working well.
  • Infections.
  • Boosting the immune system.
  • Celiac disease.
  • Systemic lupus erythematosus (SLE).
  • A skin condition called dermatitis herpetiformis.
  • Rheumatoid arthritis.
  • Kidney disease.
  • A blood disorder called thrombocytopenia.
  • Ulcerative colitis.
  • A blood vessel disorder called vasculitis.
  • Other conditions.
More evidence is needed to rate the effectiveness of spleen extract for these uses.

How does Spleen Extract work?

Spleen extract contains ingredients that are thought to stimulate the immune system.

Are there safety concerns?

It is not known if spleen extract is safe. There is some concern about contamination from sick or diseased animals. Until more is known, don't use products containing spleen extract.

Special Precautions & Warnings:

Pregnancy and breast-feeding: Not enough is known about the use of spleen extract during pregnancy and breast-feeding. Stay on the safe side and avoid use.

Dosing considerations for Spleen Extract.

The appropriate dose of spleen extract depends on several factors such as the user's age, health, and several other conditions. At this time there is not enough scientific information to determine an appropriate range of doses for spleen extract. Keep in mind that natural products are not always necessarily safe and dosages can be important. Be sure to follow relevant directions on product labels and consult your pharmacist or physician or other healthcare professional before using.

Natural Medicines Comprehensive Database rates effectiveness based on scientific evidence according to the following scale: Effective, Likely Effective, Possibly Effective, Possibly Ineffective, Likely Ineffective, and Insufficient Evidence to Rate (detailed description of each of the ratings).

FDA Logo

Report Problems to the Food and Drug Administration

You are encouraged to report negative side effects of prescription drugs to the FDA. Visit the FDA MedWatch website or call 1-800-FDA-1088.

Health Solutions From Our Sponsors


Agrawal, A. K. and Gupta, C. M. Tuftsin-bearing liposomes in treatment of macrophage-based infections. Adv.Drug Deliv.Rev. 3-30-2000;41(2):135-146. View abstract.

Amoscato, A. A., Babcock, G. F., and Nishioka, K. Synthesis and biological activity of [L-3,4-dehydroproline3]-tuftsin. Peptides 1984;5(3):489-494. View abstract.

Bump, N. J., Najjar, V. A., and Reichler, J. The characteristics of purified HL60 tuftsin receptors. Mol.Cell Biochem. 1-18-1990;92(1):77-84. View abstract.

Cooper, M. R., DeChatelet, L. R., Shirley, P. S., and Cooper, M. R. Does tuftsin alter phagocytosis by human polymorphonuclear neutrophils? Inflammation 1982;6(1):103-112. View abstract.

Csaba, G., Laszlo, V., and Kovacs, P. Effect of tuftsin on the phagocytotic activity of the unicellular Tetrahymena. Does primary interaction develop imprinting? Z.Naturforsch.[C.] 1986;41(7-8):805-806. View abstract.

Favez, G. and Leuenberger, P. [Immunology of sarcoidosis]. Schweiz.Med Wochenschr. 7-18-1981;111(29):1066-1075. View abstract.

Fiedel, B. A. Influence of tuftsin-like synthetic peptides derived from C-reactive protein (CRP) on platelet behaviour. Immunology 1988;64(3):487-493. View abstract.

Fridkin, M., Stabinsky, Y., Zakuth, V., and Spirer, Z. Tuftsin and some analogs: synthesis and interaction with human polymorphonuclear leukocytes. Biochim.Biophys.Acta 1-24-1977;496(1):203-211. View abstract.

Goldman, R. and Bar-Shavit, Z. On the mechanism of the augmentation of the phagocytic capability of phagocytic cells by Tuftsin, substance P, neurotensin, and kentsin and the interrelationship between their receptors. Ann.N.Y.Acad.Sci. 1983;419:143-155. View abstract.

Gray, G. A. The treatment of agranulocytic angina with fetal calf spleen. Texas State J Med 1933;29:366-369.

Greer, A. E. Use of fetal spleen in agranulocytosis: preliminary report. Texas State J Med 1932;28:338-343.

Hartung, H. P. and Toyka, K. V. Tuftsin stimulates the release of oxygen radicals and thromboxane from macrophages. Immunol.Lett. 1983;6(1):1-6. View abstract.

Heidemann, E., Jung, A., and Wilms, K. [Tissue specific inhibition of lymphocyte proliferation by spleen extract (lymphocyte chalone) (author's transl)]. Klin.Wochenschr. 3-1-1976;54(5):221-226. View abstract.

Heidemann, E., Jung, A., Masurczak, J., Podgornik, N., Schmidt, H., and Wilms, K. [Further purification of a tissue specific inhibitor in lymphopoiesis (lymphocyte chalone?) (author's transl)]. Blut 1979;39(2):99-106. View abstract.

Iyer, R. R., Prasad, H. K., Bhutani, L. K., and Rao, D. N. Effect of tuftsin stimulation on the microbicidal activity exerted by blood monocyte-macrophages of leprosy patients. Int.J.Immunopharmacol. 1990;12(8):859-869. View abstract.

Iyer, R. R., Prasad, H. K., Bhutani, L. K., and Rao, D. N. Modulation of human lepromatous monocyte-macrophage functions in vitro by tuftsin. Int.J.Immunopharmacol. 1990;12(8):847-858. View abstract.

Kain, Z., Alkan, M., Chaimovitz, C., Segal, S., Fridkin, M., and Levy, R. Human peritoneal macrophage activity is increased by tuftsin. Immunol.Lett. 6-1-1989;21(3):257-261. View abstract.

Kaur, J., Khare, S., Bhutani, L. K., and Rao, D. N. Enzyme immunoassay of phagocytosis stimulating tetrapeptide "tuftsin" in normal and leprosy sera. Int.J.Lepr.Other Mycobact.Dis. 1991;59(4):576-581. View abstract.

Kazanowska, B., Steuden, W., Boguslawska-Jaworska, J., and Konopinska, D. The influence of synthetic tuftsin and its analogs on the function of granulocytes of children with acute lymphoblastic leukemia. Arch.Immunol.Ther.Exp.(Warsz.) 1987;35(2):169-173. View abstract.

Khare, S., Bhutani, L. K., and Rao, D. N. Quantitative assessment of tuftsin receptor expression and second messenger during in vitro differentiation of peripheral blood derived monocytes of leprosy patients. Mol.Cell Biochem. 1997;171(1-2):1-10. View abstract.

Khare, S., Bhutani, L. K., and Rao, D. N. Release of reactive nitrogen intermediates from the peripheral blood-derived monocytes/macrophages of leprosy patients stimulated in vitro by tuftsin. Lepr.Rev. 1997;68(1):16-24. View abstract.

Konopinska, D., Kazanowska, B., and Boguslawska-Jaworska, J. Influence of the peptide chain length of new elongated tuftsin analogs on phagocytosis process. Int.J.Pept.Protein Res. 1984;24(3):267-273. View abstract.

Kornberg, A., Catane, R., Peller, S., Kaufman, S., and Fridkin, M. Tuftsin induces tissue factor-like activity in human mononuclear cells and in monocytic cell lines. Blood 8-15-1990;76(4):814-819. View abstract.

Kubo, S., Roh, M. S., Oyedeji, C., Romsdahl, M. M., and Nishioka, K. Effect of tuftsin on human Kupffer cell. Hepatogastroenterology 1998;45(24):2270-2274. View abstract.

Lewis, C. J. Letter to Reiterate Certain Public Health and Safety Concerns to Firms Manufacturing or Importing Dietary Supplements that Contain Specific Bovine Tissues. 11-14-2000;

Lukacs, K., Berenyi, E., Kavai, M., Szegedi, G., and Szekerke, M. Potentiation of the defective monocyte chemotaxis in Hodgkin's disease by in vitro tuftsin treatment. Cancer Immunol.Immunother. 1983;15(2):162-163. View abstract.

Lukacs, K., Szabo, G., Sonkoly, I., Vegh, E., Gacs, J., Szekerke, M., and Szegedi, G. Stimulating effect of tuftsin and its analogues on the defective monocyte chemotaxis in systemic lupus erythematosus. Immunopharmacology 1984;7(3-4):171-178. View abstract.

Martinez, J. and Winternitz, F. Bactericidal activity of tuftsin. Mol.Cell Biochem. 12-4-1981;41:123-136. View abstract.

Mathe, G. Do tuftsin and bestatin constitute a biopharmacological immunoregulatory system? Cancer Detect.Prev.Suppl 1987;1:445-455. View abstract.

Minter, M. M. Agranulocytic angina: Treatment of a case with fetal calf spleen. Texas State J Med 1933;2:338-343.

Mucke, D. [Tuftsin]. Allerg.Immunol.(Leipz.) 1984;30(3):127-138. View abstract.

Naim, J. O., Desiderio, D. M., Trimble, J., and Hinshaw, J. R. The identification of serum tuftsin by reverse-phase high-performance liquid chromatography and mass spectrometry. Anal.Biochem. 1987;164(1):221-226. View abstract.

Naim, J. O., Lanzafame, R. J., and van Oss, C. J. The effect of anti-tuftsin antibody on the phagocytosis of bacteria by human neutrophils. Immunol.Invest 1991;20(5-6):499-506. View abstract.

Najjar, V. A. and Nishioka, K. "Tuftsin": a natural phagocytosis stimulating peptide. Nature 11-14-1970;228(5272):672-673. View abstract.

Najjar, V. A. Biochemical aspects of tuftsin deficiency syndrome. Med.Biol. 1981;59(3):134-138. View abstract.

Najjar, V. A. Tuftsin, a natural activator of phagocyte cells: an overview. Ann.N.Y.Acad.Sci. 1983;419:1-11. View abstract.

Nishioka, K. Migration enhancement by tuftsin of human mononuclear cells and its effect on the migration inhibition factor test with tumor antigens. Gann 1978;69(4):569-572. View abstract.

Nishioka, K., Amoscato, A. A., and Babcock, G. F. Tuftsin: a hormone-like tetrapeptide with antimicrobial and antitumor activities. Life Sci. 3-9-1981;28(10):1081-1090. View abstract.

Nishioka, K., Amoscato, A. A., Babcock, G. F., Banks, R. A., and Phillips, J. H. Tuftsin: an immunomodulating peptide hormone and its clinical potential as a natural biological response modifier. Cancer Invest 1984;2(1):39-49. View abstract.

Nishioka, K., Dessens, S. E., and Rodriguez, T., Jr. Stability of sterile saline solutions of synthetic tuftsin, a naturally occurring immunomodulating peptide. Pept.Res. 1991;4(4):230-233. View abstract.

Nishioka, K., Hurr, K. J., Dessens, S. E., and Rodriguez, T., Jr. A comparative study of [Leu1]Tuftsin and tuftsin, a natural phagocytosis-stimulating peptide. Int.J.Biochem. 1991;23(5-6):627-630. View abstract.

Nishioka, K., Wagle, J. R., Rodriguez, T., Jr., Maeta, M., Kubo, S., and Dessens, S. E. Studies of human granulocyte phagocytosis stimulation by tuftsin. J.Surg.Res. 1994;56(1):94-101. View abstract.

Owais, M., Ahmed, I., Krishnakumar, B., Jain, R. K., Bachhawat, B. K., and Gupta, C. M. Tuftsin-bearing liposomes as drug vehicles in the treatment of experimental aspergillosis. FEBS Lett. 7-12-1993;326(1-3):56-58. View abstract.

Paulesu, L., Di Stefano, A., Luzzi, E., Bocci, V., Silvestri, S., and Nencioni, L. Effect of tuftsin and its retro-inverso analogue on the release of interferon (IFN-gamma) and tumor necrosis factor (TNF-alpha) by human leucocytes. Immunol.Lett. 1992;34(1):7-11. View abstract.

Phillips, J. H., Nishioka, K., and Babcock, G. F. Tuftsin-induced enhancement of murine and human natural cell-mediated cytotoxicity. Ann.N.Y.Acad.Sci. 1983;419:192-204. View abstract.

Rocchi, R., Biondi, L., Filira, F., Tzehoval, E., Dagan, S., and Fridkin, M. Glyco-tuftsin derivatives modulate interleukin-1 and tumor necrosis factor production. Int.J.Pept.Protein Res. 1991;37(3):161-166. View abstract.

Spirer, Z., Zakuth, V., Diamant, S., Mondorf, W., Stefanescu, T., Stabinsky, Y., and Fridkin, M. Decreased tuftsin concentrations in patients who have undergone splenectomy. Br.Med.J. 12-17-1977;2(6102):1574-1576. View abstract.

Spirer, Z., Zakuth, V., Tzehoval, E., Dagan, S., Fridkin, M., Golander, A., and Melamed, I. Tuftsin stimulates IL-1 production by human mononuclear cells, human spleen cells and mouse spleen cells in vitro. J.Clin.Lab Immunol. 1989;28(1):27-31. View abstract.

Stabinsky, Y., Bar-Shavit, Z., Fridkin, M., and Goldman, R. On the mechanism of action of the phagocytosis-stimulating peptide tuftsin. Mol.Cell Biochem. 4-18-1980;30(2):71-77. View abstract.

Stabinsky, Y., Fridkin, M., Zakuth, V., and Spirer, Z. Synthesis and biological activity of tuftsin and of [O = C Thr1]-tuftsin. A novel synthetic route to peptides containing N-terminal L -O = C Thr and L - O = C Ser residues. Int.J.Pept.Protein Res. 1978;12(3):130-138. View abstract.

Surkis, R., Rubinraut, S., Dagan, S., Tzehoval, E., Fridkin, M., Ben Yoseph, R., and Catane, R. Polytuftsin: a potential precursor for slow release of the phagocytosis stimulating peptide tuftsin. Int.J.Biochem. 1990;22(2):193-195. View abstract.

Trevisani, F., Castelli, E., Foschi, F. G., Parazza, M., Loggi, E., Bertelli, M., Melotti, C., Domenicali, M., Zoli, G., and Bernardi, M. Impaired tuftsin activity in cirrhosis: relationship with splenic function and clinical outcome. Gut 2002;50(5):707-712. View abstract.

Val'dman, A. V., Bondarenko, N. A., Kozlovskaia, M. M., Rusakov, D. I., and Kalikhevich, V. N. [Comparative study of the psychotropic activity of tuftsin and its analogs]. Biull.Eksp.Biol.Med. 1982;93(4):49-52. View abstract.

Val'dman, A. V., Kozlovskaia, M. M., Ashmarin, I. P., Mineeva, M. F., and Anokhin, K. V. [Central effects of the tetrapeptide tuftsin]. Biull.Eksp.Biol.Med. 1981;92(7):31-33. View abstract.

Wagle, J. R., Ansevin, A. T., Dessens, S. E., and Nishioka, K. Specific translocation of tuftsin (Thr-Lys-Pro-Arg), a natural immunomodulating peptide, into the nuclei of human monocytes. Biochem.Biophys.Res.Commun. 3-31-1989;159(3):1147-1153. View abstract.

Wiedermann, C. J., Niedermuhlbichler, M., Zilian, U., Geissler, D., Lindley, I., and Braunsteiner, H. Priming of normal human neutrophils by tachykinins: tuftsin-like inhibition of in vitro chemotaxis stimulated by formylpeptide or interleukin-8. Regul.Pept. 11-26-1991;36(3):359-368. View abstract.

Wleklik, M. S., Luczak, M., and Najjar, V. A. Tuftsin induced tumor necrosis activity. Mol.Cell Biochem. 1987;75(2):169-174. View abstract.

Zoli, G., Corazza, G. R., D'Amato, G., Bartoli, R., Baldoni, F., and Gasbarrini, G. Splenic autotransplantation after splenectomy: tuftsin activity correlates with residual splenic function. Br.J.Surg. 1994;81(5):716-718. View abstract.

Zoli, G., Corazza, G. R., Wood, S., Bartoli, R., Gasbarrini, G., and Farthing, M. J. Impaired splenic function and tuftsin deficiency in patients with intestinal failure on long term intravenous nutrition. Gut 1998;43(6):759-762. View abstract.

Corazza GR, Zoli G, Ginaldi L, et al. Tuftsin deficiency in AIDS. Lancet 1991;337:12-3. View abstract.

Fridkin M, Najjar VA. Tuftsin: its chemistry, biology, and clinical potential. Crit Rev Biochem Mol Biol 1989;24:1-40. View abstract.

Lewis CJ. Letter to reiterate certain public health and safety concerns to firms manufacturing or importing dietary supplements that contain specific bovine tissues. FDA. Available at:

Murray MT. Encyclopedia of Nutritional Supplements. Rocklin, CA: Prima Health, 1996.

Volk HD, Eckert R, Diamantstein T, Schmitz H. [Immunorestitutive action of hydrolysates and ultrafiltrates of bovine spleen]. Arzneimittelforschung 1991;41:1281-5. View abstract.

Health Solutions From Our Sponsors