WARNING
SERIOUS INFECTIONS AND MALIGNANCY
Serious Infections
Patients treated with XELJANZ/XELJANZ XR are at increased risk for developing serious infections that may lead to hospitalization or death [see WARNINGS AND PRECAUTIONS, ADVERSE REACTIONS]. Most patients who developed these infections were taking concomitant immunosuppressants such as methotrexate or corticosteroids.
If a serious infection develops, interrupt XELJANZ/XELJANZ XR until the infection is controlled.
Reported infections include:
- Active tuberculosis, which may present with pulmonary or extrapulmonary disease. Patients should be tested for latent tuberculosis before XELJANZ/XELJANZ XR use and during therapy. Treatment for latent infection should be initiated prior to XELJANZ/XELJANZ XR use.
- Invasive fungal infections, including cryptococcosis and pneumocystosis. Patients with invasive fungal infections may present with disseminated, rather than localized, disease.
- Bacterial, viral, including herpes zoster, and other infections due to opportunistic pathogens.
The risks and benefits of treatment with XELJANZ/XELJANZ XR should be carefully considered prior to initiating therapy in patients with chronic or recurrent infection.
Patients should be closely monitored for the development of signs and symptoms of infection during and after treatment with XELJANZ/XELJANZ XR, including the possible development of tuberculosis in patients who tested negative for latent tuberculosis infection prior to initiating therapy [see WARNINGS AND PRECAUTIONS].
Malignancies
Lymphoma and other malignancies have been observed in patients treated with XELJANZ. Epstein Barr Virus-associated post-transplant lymphoproliferative disorder has been observed at an increased rate in renal transplant patients treated with XELJANZ and concomitant immunosuppressive medications [see WARNINGS AND PRECAUTIONS].
DESCRIPTION
XELJANZ/XELJANZ XR (tofacitinib) tablets are formulated with the citrate salt of tofacitinib, a JAK inhibitor.
Tofacitinib citrate is a white to off-white powder with the following chemical name: (3R,4R)-4-methyl-3-(methyl-7H-pyrrolo [2,3-d]pyrimidin-4-ylamino)-ß-oxo-1- piperidinepropanenitrile, 2-hydroxy-1,2,3-propanetricarboxylate (1:1).
The solubility of tofacitinib citrate in water is 2.9 mg/mL.
Tofacitinib citrate has a molecular weight of 504.5 Daltons (or 312.4 Daltons as the tofacitinib free base) and a molecular formula of C16H20N6O•C6H8O7. The chemical structure of tofacitinib citrate is:
![]() |
XELJANZ is supplied for oral administration as a 5 mg white round, immediate-release film-coated tablet. Each tablet of XELJANZ contains 5 mg tofacitinib (equivalent to 8.08 mg tofacitinib citrate) and the following inactive ingredients: croscarmellose sodium, HPMC 2910/Hypromellose 6cP, lactose monohydrate, macrogol/PEG3350, magnesium stearate, microcrystalline cellulose, titanium dioxide, and triacetin.
XELJANZ is supplied for oral administration as a 10 mg blue round, immediate-release film-coated tablet. Each 10 mg tablet of XELJANZ contains 10 mg tofacitinib (equivalent to 16.16 mg of tofacitinib citrate) and the following inactive ingredients: croscarmellose sodium, FD&C Blue #1/Brilliant Blue FCF Aluminum Lake, FD&C Blue #2/Indigo Carmine Aluminum Lake, HPMC 2910/Hypromellose 6cP, lactose monohydrate, macrogol/PEG3350, magnesium stearate, microcrystalline cellulose, titanium dioxide, and triacetin.
XELJANZ XR is supplied for oral administration as a 11 mg pink, oval, extended-release film-coated tablet with a drilled hole at one end of the tablet band. Each 11 mg tablet of XELJANZ XR contains 11 mg tofacitinib (equivalent to 17.77 mg tofacitinib citrate) and the following inactive ingredients: cellulose acetate, copovidone, hydroxyethyl cellulose, hydroxypropylcellulose, HPMC 2910/Hypromellose, magnesium stearate, red iron oxide, sorbitol, titanium dioxide and triacetin. Printing ink contains, ammonium hydroxide, ferrosoferric oxide/black iron oxide, propylene glycol, and shellac glaze.
INDICATIONS
Mania
Depakote (divalproex sodium) is a valproate and is indicated for the treatment of the manic episodes associated with bipolar disorder. A manic episode is a distinct period of abnormally and persistently elevated, expansive, or irritable mood. Typical symptoms of mania include pressure of speech, motor hyperactivity, reduced need for sleep, flight of ideas, grandiosity, poor judgment, aggressiveness, and possible hostility.
The efficacy of Depakote was established in 3-week trials with patients meeting DSM-III-R criteria for bipolar disorder who were hospitalized for acute mania [see Clinical Studies].
The safety and effectiveness of Depakote for long-term use in mania, i.e., more than 3 weeks, has not been demonstrated in controlled clinical trials. Therefore, healthcare providers who elect to use Depakote for extended periods should continually reevaluate the long-term usefulness of the drug for the individual patient.
Epilepsy
Depakote is indicated as monotherapy and adjunctive therapy in the treatment of patients with complex partial seizures that occur either in isolation or in association with other types of seizures. Depakote is also indicated for use as sole and adjunctive therapy in the treatment of simple and complex absence seizures, and adjunctively in patients with multiple seizure types that include absence seizures.
Simple absence is defined as very brief clouding of the sensorium or loss of consciousness accompanied by certain generalized epileptic discharges without other detectable clinical signs. Complex absence is the term used when other signs are also present.
Migraine
Depakote is indicated for prophylaxis of migraine headaches. There is no evidence that Depakote is useful in the acute treatment of migraine headaches.
Important Limitations
Because of the risk to the fetus of decreased IQ, neurodevelopmental disorders, neural tube defects, and other major congenital malformations, which may occur very early in pregnancy, valproate should not be used to treat women with epilepsy or bipolar disorder who are pregnant or who plan to become pregnant unless other medications have failed to provide adequate symptom control or are otherwise unacceptable. Valproate should not be administered to a woman of childbearing potential unless other medications have failed to provide adequate symptom control or are otherwise unacceptable [see WARNINGS AND PRECAUTIONS, Use In Specific Populations, and PATIENT INFORMATION].
For prophylaxis of migraine headaches, Depakote is contraindicated in women who are pregnant and in women of childbearing potential who are not using effective contraception [see CONTRAINDICATIONS].
DOSAGE AND ADMINISTRATION
Depakote tablets are intended for oral administration. Depakote tablets should be swallowed whole and should not be crushed or chewed.
Patients should be informed to take Depakote every day as prescribed. If a dose is missed it should be taken as soon as possible, unless it is almost time for the next dose. If a dose is skipped, the patient should not double the next dose.
Mania
Depakote tablets are administered orally. The recommended initial dose is 750 mg daily in divided doses. The dose should be increased as rapidly as possible to achieve the lowest therapeutic dose which produces the desired clinical effect or the desired range of plasma concentrations. In placebo-controlled clinical trials of acute mania, patients were dosed to a clinical response with a trough plasma concentration between 50 and 125 mcg/mL. Maximum concentrations were generally achieved within 14 days. The maximum recommended dosage is 60 mg/kg/day.
There is no body of evidence available from controlled trials to guide a clinician in the longer term management of a patient who improves during Depakote treatment of an acute manic episode. While it is generally agreed that pharmacological treatment beyond an acute response in mania is desirable, both for maintenance of the initial response and for prevention of new manic episodes, there are no data to support the benefits of Depakote in such longer-term treatment.
Although there are no efficacy data that specifically address longer-term antimanic treatment with Depakote, the safety of Depakote in long-term use is supported by data from record reviews involving approximately 360 patients treated with Depakote for greater than 3 months.
Epilepsy
Depakote tablets are administered orally. Depakote is indicated as monotherapy and adjunctive therapy in complex partial seizures in adults and pediatric patients down to the age of 10 years, and in simple and complex absence seizures. As the Depakote dosage is titrated upward, concentrations of clonazepam, diazepam, ethosuximide, lamotrigine, tolbutamide, phenobarbital, carbamazepine, and/or phenytoin may be affected [see DRUG INTERACTIONS].
Complex Partial Seizures
For adults and children 10 years of age or older.
Monotherapy (Initial Therapy)
Depakote has not been systematically studied as initial therapy. Patients should initiate therapy at 10 to 15 mg/kg/day. The dosage should be increased by 5 to 10 mg/kg/week to achieve optimal clinical response. Ordinarily, optimal clinical response is achieved at daily doses below 60 mg/kg/day. If satisfactory clinical response has not been achieved, plasma levels should be measured to determine whether or not they are in the usually accepted therapeutic range (50 to 100 mcg/mL). No recommendation regarding the safety of valproate for use at doses above 60 mg/kg/day can be made.
The probability of thrombocytopenia increases significantly at total trough valproate plasma concentrations above 110 mcg/mL in females and 135 mcg/mL in males. The benefit of improved seizure control with higher doses should be weighed against the possibility of a greater incidence of adverse reactions.
Conversion to Monotherapy
Patients should initiate therapy at 10 to 15 mg/kg/day. The dosage should be increased by 5 to 10 mg/kg/week to achieve optimal clinical response. Ordinarily, optimal clinical response is achieved at daily doses below 60 mg/kg/day. If satisfactory clinical response has not been achieved, plasma levels should be measured to determine whether or not they are in the usually accepted therapeutic range (50-100 mcg/mL). No recommendation regarding the safety of valproate for use at doses above 60 mg/kg/day can be made. Concomitant antiepilepsy drug (AED) dosage can ordinarily be reduced by approximately 25% every 2 weeks. This reduction may be started at initiation of Depakote therapy, or delayed by 1 to 2 weeks if there is a concern that seizures are likely to occur with a reduction. The speed and duration of withdrawal of the concomitant AED can be highly variable, and patients should be monitored closely during this period for increased seizure frequency.
Adjunctive Therapy
Depakote may be added to the patient's regimen at a dosage of 10 to 15 mg/kg/day. The dosage may be increased by 5 to 10 mg/kg/week to achieve optimal clinical response. Ordinarily, optimal clinical response is achieved at daily doses below 60 mg/kg/day. If satisfactory clinical response has not been achieved, plasma levels should be measured to determine whether or not they are in the usually accepted therapeutic range (50 to 100 mcg/mL). No recommendation regarding the safety of valproate for use at doses above 60 mg/kg/day can be made. If the total daily dose exceeds 250 mg, it should be given in divided doses.
In a study of adjunctive therapy for complex partial seizures in which patients were receiving either carbamazepine or phenytoin in addition to valproate, no adjustment of carbamazepine or phenytoin dosage was needed [see Clinical Studies]. However, since valproate may interact with these or other concurrently administered AEDs as well as other drugs, periodic plasma concentration determinations of concomitant AEDs are recommended during the early course of therapy [see DRUG INTERACTIONS].
Simple And Complex Absence Seizures
The recommended initial dose is 15 mg/kg/day, increasing at one week intervals by 5 to 10 mg/kg/day until seizures are controlled or side effects preclude further increases. The maximum recommended dosage is 60 mg/kg/day. If the total daily dose exceeds 250 mg, it should be given in divided doses.
A good correlation has not been established between daily dose, serum concentrations, and therapeutic effect. However, therapeutic valproate serum concentrations for most patients with absence seizures is considered to range from 50 to 100 mcg/mL. Some patients may be controlled with lower or higher serum concentrations [see CLINICAL PHARMACOLOGY].
As the Depakote dosage is titrated upward, blood concentrations of phenobarbital and/or phenytoin may be affected [see DRUG INTERACTIONS].
Antiepilepsy drugs should not be abruptly discontinued in patients in whom the drug is administered to prevent major seizures because of the strong possibility of precipitating status epilepticus with attendant hypoxia and threat to life.
In epileptic patients previously receiving valproic acid therapy, Depakote tablets should be initiated at the same daily dose and dosing schedule. After the patient is stabilized on Depakote tablets, a dosing schedule of two or three times a day may be elected in selected patients.
Migraine
Depakote is indicated for prophylaxis of migraine headaches in adults.
Depakote tablets are administered orally. The recommended starting dose is 250 mg twice daily. Some patients may benefit from doses up to 1,000 mg/day. In the clinical trials, there was no evidence that higher doses led to greater efficacy.
General Dosing Advice
Dosing In Elderly Patients
Due to a decrease in unbound clearance of valproate and possibly a greater sensitivity to somnolence in the elderly, the starting dose should be reduced in these patients. Dosage should be increased more slowly and with regular monitoring for fluid and nutritional intake, dehydration, somnolence, and other adverse reactions. Dose reductions or discontinuation of valproate should be considered in patients with decreased food or fluid intake and in patients with excessive somnolence. The ultimate therapeutic dose should be achieved on the basis of both tolerability and clinical response [see WARNINGS AND PRECAUTIONS, Use In Specific Populations, and CLINICAL PHARMACOLOGY].
Dose-Related Adverse Reactions
The frequency of adverse effects (particularly elevated liver enzymes and thrombocytopenia) may be dose-related. The probability of thrombocytopenia appears to increase significantly at total valproate concentrations of ≥ 110 mcg/mL (females) or ≥ 135 mcg/mL (males) [see WARNINGS AND PRECAUTIONS]. The benefit of improved therapeutic effect with higher doses should be weighed against the possibility of a greater incidence of adverse reactions.
G.I. Irritation
Patients who experience G.I. irritation may benefit from administration of the drug with food or by slowly building up the dose from an initial low level.
Dosing In Patients Taking Rufinamide
Patients stabilized on rufinamide before being prescribed valproate should begin valproate therapy at a low dose, and titrate to a clinically effective dose [see DRUG INTERACTIONS].
HOW SUPPLIED
Dosage Forms And Strengths
Depakote tablets (divalproex sodium delayed-release tablets) are supplied as:
- 125 mg salmon pink-colored tablets with the “a” logo and the code NT
- 125 mg salmon pink-colored tablets with the code NT
- 250 mg peach-colored tablets with the “a” logo and the code NR
- 250 mg peach-colored tablets with the code NR
- 500 mg lavender-colored tablets with the “a” logo and the code NS
- 500 mg lavender-colored tablets with the code NS
Storage And Handling
Depakote tablets (divalproex sodium delayed-release tablets) are supplied as:
125 mg Salmon Pink-Colored Tablets
- Bottles of 100, tablets with the “a” logo and the code NT – NDC 0074-6212-13
- Bottles of 100, tablets with the code NT – NDC 0074-7325-13
250 mg Peach-Colored Tablets
- Bottles of 100, tablets with the “a” logo and the code NR – NDC 0074-6214-13
- Bottles of 100, tablets with the code NR – NDC 0074-7326-13
500 mg Lavender-Colored Tablets
- Bottles of 100, tablets with the “a” logo and the code NS – NDC 0074-6215-13
- Bottles of 100, tablets with the code NS – NDC 0074-7327-13
Recommended Storage
Store tablets below 86°F (30°C).
Depakote ER:
250 mg is Manufactured by AbbVie LTD, Barceloneta, PR 00617
500 mg is Manufactured by AbbVie Inc., North Chicago, IL 60064 U.S.A. or AbbVie LTD, Barceloneta, PR 00617
Manufactured For AbbVie Inc., North Chicago, IL 60064 U.S.A.
Depakote Tablets:
Manufactured by AbbVie LTD, Barceloneta, PR 00617
Manufactured For AbbVie Inc., North Chicago, IL 60064, U.S.A.
Depakote Sprinkle Capsules:
AbbVie Inc., North Chicago, IL 60064, U.S.A.
SIDE EFFECTS
The following serious adverse reactions are described below and elsewhere in the labeling:
- Hepatic failure [see WARNINGS AND PRECAUTIONS]
- Birth defects [see WARNINGS AND PRECAUTIONS]
- Decreased IQ following in utero exposure [see WARNINGS AND PRECAUTIONS]
- Pancreatitis [see WARNINGS AND PRECAUTIONS]
- Hyperammonemic encephalopathy [see WARNINGS AND PRECAUTIONS]
- Suicidal behavior and ideation [see WARNINGS AND PRECAUTIONS]
- Bleeding and other hematopoietic disorders [see WARNINGS AND PRECAUTIONS]
- Hypothermia [see WARNINGS AND PRECAUTIONS]
- Drug Reaction with Eosinophilia and Systemic Symptoms (DRESS)/Multiorgan hypersensitivity reactions [see WARNINGS AND PRECAUTIONS]
- Somnolence in the elderly [see WARNINGS AND PRECAUTIONS]
Because clinical studies are conducted under widely varying conditions, adverse reaction rates observed in the clinical studies of a drug cannot be directly compared to rates in the clinical studies of another drug and may not reflect the rates observed in practice.
Mania
The incidence of treatment-emergent events has been ascertained based on combined data from two three week placebo-controlled clinical trials of Depakote in the treatment of manic episodes associated with bipolar disorder. The adverse reactions were usually mild or moderate in intensity, but sometimes were serious enough to interrupt treatment. In clinical trials, the rates of premature termination due to intolerance were not statistically different between placebo, Depakote, and lithium carbonate. A total of 4%, 8% and 11% of patients discontinued therapy due to intolerance in the placebo, Depakote, and lithium carbonate groups, respectively.
Table 2 summarizes those adverse reactions reported for patients in these trials where the incidence rate in the Depakote-treated group was greater than 5% and greater than the placebo incidence, or where the incidence in the Depakote-treated group was statistically significantly greater than the placebo group. Vomiting was the only reaction that was reported by significantly (p ≤ 0.05) more patients receiving Depakote compared to placebo.
Table 2. Adverse Reactions Reported by > 5% of Depakote-Treated Patients During Placebo-Controlled Trials of Acute Mania1
Adverse Reaction | Depakote (n = 89) % |
Placebo (n = 97) % |
Nausea | 22 | 15 |
Somnolence | 19 | 12 |
Dizziness | 12 | 4 |
Vomiting | 12 | 3 |
Accidental Injury | 11 | 5 |
Asthenia | 10 | 7 |
Abdominal Pain | 9 | 8 |
Dyspepsia | 9 | 8 |
Rash | 6 | 3 |
1 The following adverse reactions occurred at an equal or greater incidence for placebo than for Depakote: back pain, headache, constipation, diarrhea, tremor, and pharyngitis. |
The following additional adverse reactions were reported by greater than 1% but not more than 5% of the 89 Depakote-treated patients in controlled clinical trials:
Body as a Whole: Chest pain, chills, chills and fever, fever, neck pain, neck rigidity.
Cardiovascular System: Hypertension, hypotension, palpitations, postural hypotension, tachycardia, vasodilation.
Digestive System: Anorexia, fecal incontinence, flatulence, gastroenteritis, glossitis, periodontal abscess.
Hemic and Lymphatic System: Ecchymosis.
Metabolic and Nutritional Disorders: Edema, peripheral edema.
Musculoskeletal System: Arthralgia, arthrosis, leg cramps, twitching.
Nervous System: Abnormal dreams, abnormal gait, agitation, ataxia, catatonic reaction, confusion, depression, diplopia, dysarthria, hallucinations, hypertonia, hypokinesia, insomnia, paresthesia, reflexes increased, tardive dyskinesia, thinking abnormalities, vertigo.
Respiratory System: Dyspnea, rhinitis.
Skin and Appendages: Alopecia, discoid lupus erythematosus, dry skin, furunculosis, maculopapular rash, seborrhea.
Special Senses: Amblyopia, conjunctivitis, deafness, dry eyes, ear pain, eye pain, tinnitus.
Urogenital System: Dysmenorrhea, dysuria, urinary incontinence.
Epilepsy
Based on a placebo-controlled trial of adjunctive therapy for treatment of complex partial seizures, Depakote was generally well tolerated with most adverse reactions rated as mild to moderate in severity. Intolerance was the primary reason for discontinuation in the Depakotetreated patients (6%), compared to 1% of placebo-treated patients.
Table 3 lists treatment-emergent adverse reactions which were reported by ≥ 5% of Depakotetreated patients and for which the incidence was greater than in the placebo group, in the placebo-controlled trial of adjunctive therapy for treatment of complex partial seizures. Since patients were also treated with other antiepilepsy drugs, it is not possible, in most cases, to determine whether the following adverse reactions can be ascribed to Depakote alone, or the combination of Depakote and other antiepilepsy drugs.
Table 3. Adverse Reactions Reported by ≥ 5% of Patients Treated with Depakote During Placebo-Controlled Trial of Adjunctive Therapy for Complex Partial Seizures
Body System/Reaction | Depakote (n = 77) % |
Placebo (n = 70) % |
Body as a Whole | ||
Headache | 31 | 21 |
Asthenia | 27 | 7 |
Fever | 6 | 4 |
Gastrointestinal System | ||
Nausea | 48 | 14 |
Vomiting | 27 | 7 |
Abdominal Pain | 23 | 6 |
Diarrhea | 13 | 6 |
Anorexia | 12 | 0 |
Dyspepsia | 8 | 4 |
Constipation | 5 | 1 |
Nervous System | ||
Somnolence | 27 | 11 |
Tremor | 25 | 6 |
Dizziness | 25 | 13 |
Diplopia | 16 | 9 |
Amblyopia/Blurred Vision | 12 | 9 |
Ataxia | 8 | 1 |
Nystagmus | 8 | 1 |
Emotional Lability | 6 | 4 |
Thinking Abnormal | 6 | 0 |
Amnesia | 5 | 1 |
Respiratory System | ||
Flu Syndrome | 12 | 9 |
Infection | 12 | 6 |
Bronchitis | 5 | 1 |
Rhinitis | 5 | 4 |
Other | ||
Alopecia | 6 | 1 |
Weight Loss | 6 | 0 |
Table 4 lists treatment-emergent adverse reactions which were reported by ≥ 5% of patients in the high dose valproate group, and for which the incidence was greater than in the low dose group, in a controlled trial of Depakote monotherapy treatment of complex partial seizures. Since patients were being titrated off another antiepilepsy drug during the first portion of the trial, it is not possible, in many cases, to determine whether the following adverse reactions can be ascribed to Depakote alone, or the combination of valproate and other antiepilepsy drugs.
Table 4. Adverse Reactions Reported by ≥ 5% of Patients in the High Dose Group in the Controlled Trial of Valproate Monotherapy for Complex Partial Seizures1
Body System/Reaction | High Dose (n = 131) % |
Low Dose (n = 134) % |
Body as a Whole | ||
Asthenia | 21 | 10 |
Digestive System | ||
Nausea | 34 | 26 |
Diarrhea | 23 | 19 |
Vomiting | 23 | 15 |
Abdominal Pain | 12 | 9 |
Anorexia | 11 | 4 |
Dyspepsia | 11 | 10 |
Hemic/Lymphatic System | ||
Thrombocytopenia | 24 | 1 |
Ecchymosis | 5 | 4 |
Metabolic/Nutritional | ||
Weight Gain | 9 | 4 |
Peripheral Edema | 8 | 3 |
Nervous System | ||
Tremor | 57 | 19 |
Somnolence | 30 | 18 |
Dizziness | 18 | 13 |
Insomnia | 15 | 9 |
Nervousness | 11 | 7 |
Amnesia | 7 | 4 |
Nystagmus | 7 | 1 |
Depression | 5 | 4 |
Respiratory System | ||
Infection | 20 | 13 |
Pharyngitis | 8 | 2 |
Dyspnea | 5 | 1 |
Skin and Appendages | ||
Alopecia | 24 | 13 |
Special Senses | ||
Amblyopia/Blurred Vision | 8 | 4 |
Tinnitus | 7 | 1 |
1 Headache was the only adverse reaction that occurred in ≥ 5% of patients in the high dose group and at an equal or greater incidence in the low dose group. |
The following additional adverse reactions were reported by greater than 1% but less than 5% of the 358 patients treated with valproate in the controlled trials of complex partial seizures:
Body as a Whole: Back pain, chest pain, malaise.
Cardiovascular System: Tachycardia, hypertension, palpitation.
Digestive System: Increased appetite, flatulence, hematemesis, eructation, pancreatitis, periodontal abscess.
Hemic and Lymphatic System: Petechia.
Metabolic and Nutritional Disorders: SGOT increased, SGPT increased.
Musculoskeletal System: Myalgia, twitching, arthralgia, leg cramps, myasthenia.
Nervous System: Anxiety, confusion, abnormal gait, paresthesia, hypertonia, incoordination, abnormal dreams, personality disorder.
Respiratory System: Sinusitis, cough increased, pneumonia, epistaxis.
Skin and Appendages: Rash, pruritus, dry skin.
Special Senses: Taste perversion, abnormal vision, deafness, otitis media.
Urogenital System: Urinary incontinence, vaginitis, dysmenorrhea, amenorrhea, urinary frequency.
Migraine
Based on two placebo-controlled clinical trials and their long term extension, valproate was generally well tolerated with most adverse reactions rated as mild to moderate in severity. Of the 202 patients exposed to valproate in the placebo-controlled trials, 17% discontinued for intolerance. This is compared to a rate of 5% for the 81 placebo patients. Including the long term extension study, the adverse reactions reported as the primary reason for discontinuation by ≥ 1% of 248 valproate-treated patients were alopecia (6%), nausea and/or vomiting (5%), weight gain (2%), tremor (2%), somnolence (1%), elevated SGOT and/or SGPT (1%), and depression (1%).
Table 5 includes those adverse reactions reported for patients in the placebo-controlled trials where the incidence rate in the Depakote-treated group was greater than 5% and was greater than that for placebo patients.
Table 5. Adverse Reactions Reported by > 5% of Depakote-Treated Patients During Migraine Placebo-Controlled Trials with a Greater Incidence Than Patients Taking Placebo1
Body System Reaction | Depakote (N = 202) % |
Placebo (N = 81) % |
Gastrointestinal System | ||
Nausea | 31 | 10 |
Dyspepsia | 13 | 9 |
Diarrhea | 12 | 7 |
Vomiting | 11 | 1 |
Abdominal Pain | 9 | 4 |
Increased Appetite | 6 | 4 |
Nervous System | ||
Asthenia | 20 | 9 |
Somnolence | 17 | 5 |
Dizziness | 12 | 6 |
Tremor | 9 | 0 |
Other | ||
Weight Gain | 8 | 2 |
Back Pain | 8 | 6 |
Alopecia | 7 | 1 |
1 The following adverse reactions occurred in at least 5% of Depakote-treated patients and at an equal or greater incidence for placebo than for Depakote: flu syndrome and pharyngitis. |
The following additional adverse reactions were reported by greater than 1% but not more than 5% of the 202 Depakote-treated patients in the controlled clinical trials:
Body as a Whole: Chest pain, chills, face edema, fever and malaise.
Cardiovascular System: Vasodilatation.
Digestive System: Anorexia, constipation, dry mouth, flatulence, gastrointestinal disorder (unspecified), and stomatitis.
Hemic and Lymphatic System: Ecchymosis.
Metabolic and Nutritional Disorders: Peripheral edema, SGOT increase, and SGPT increase.
Musculoskeletal System: Leg cramps and myalgia.
Nervous System: Abnormal dreams, amnesia, confusion, depression, emotional lability, insomnia, nervousness, paresthesia, speech disorder, thinking abnormalities, and vertigo.
Respiratory System: Cough increased, dyspnea, rhinitis, and sinusitis.
Skin and Appendages: Pruritus and rash.
Special Senses: Conjunctivitis, ear disorder, taste perversion, and tinnitus.
Urogenital System: Cystitis, metrorrhagia, and vaginal hemorrhage.
Postmarketing Experience
The following adverse reactions have been identified during post approval use of Depakote. Because these reactions are reported voluntarily from a population of uncertain size, it is not always possible to reliably estimate their frequency or establish a causal relationship to drug exposure.
Dermatologic: Hair texture changes, hair color changes, photosensitivity, erythema multiforme, toxic epidermal necrolysis, nail and nail bed disorders, and Stevens-Johnson syndrome.
Psychiatric: Emotional upset, psychosis, aggression, psychomotor hyperactivity, hostility, disturbance in attention, learning disorder, and behavioral deterioration.
Neurologic: Paradoxical convulsion, parkinsonism
There have been several reports of acute or subacute cognitive decline and behavioral changes (apathy or irritability) with cerebral pseudoatrophy on imaging associated with valproate therapy; both the cognitive/behavioral changes and cerebral pseudoatrophy reversed partially or fully after valproate discontinuation.
There have been reports of acute or subacute encephalopathy in the absence of elevated ammonia levels, elevated valproate levels, or neuroimaging changes. The encephalopathy reversed partially or fully after valproate discontinuation.
Musculoskeletal: Fractures, decreased bone mineral density, osteopenia, osteoporosis, and weakness.
Hematologic: Relative lymphocytosis, macrocytosis, leukopenia, anemia including macrocytic with or without folate deficiency, bone marrow suppression, pancytopenia, aplastic anemia, agranulocytosis, and acute intermittent porphyria.
Endocrine: Irregular menses, secondary amenorrhea, hyperandrogenism, hirsutism, elevated testosterone level, breast enlargement, galactorrhea, parotid gland swelling, polycystic ovary disease, decreased carnitine concentrations, hyponatremia, hyperglycinemia, and inappropriate ADH secretion.
There have been rare reports of Fanconi's syndrome occurring chiefly in children.
Metabolism and nutrition: Weight gain.
Reproductive: Aspermia, azoospermia, decreased sperm count, decreased spermatozoa motility, male infertility, and abnormal spermatozoa morphology.
Genitourinary: Enuresis, urinary tract infection, and tubulointerstitial nephritis.
Special Senses: Hearing loss.
Other: Allergic reaction, anaphylaxis, developmental delay, bone pain, bradycardia, and cutaneous vasculitis.
DRUG INTERACTIONS
Effects Of Co-Administered Drugs On Valproate Clearance
Drugs that affect the level of expression of hepatic enzymes, particularly those that elevate levels of glucuronosyltransferases (such as ritonavir), may increase the clearance of valproate. For example, phenytoin, carbamazepine, and phenobarbital (or primidone) can double the clearance of valproate. Thus, patients on monotherapy will generally have longer half-lives and higher concentrations than patients receiving polytherapy with antiepilepsy drugs.
In contrast, drugs that are inhibitors of cytochrome P450 isozymes, e.g., antidepressants, may be expected to have little effect on valproate clearance because cytochrome P450 microsomal mediated oxidation is a relatively minor secondary metabolic pathway compared to glucuronidation and beta-oxidation.
Because of these changes in valproate clearance, monitoring of valproate and concomitant drug concentrations should be increased whenever enzyme inducing drugs are introduced or withdrawn.
The following list provides information about the potential for an influence of several commonly prescribed medications on valproate pharmacokinetics. The list is not exhaustive nor could it be, since new interactions are continuously being reported.
Drugs For Which A Potentially Important Interaction Has Been Observed
Aspirin
A study involving the co-administration of aspirin at antipyretic doses (11 to 16 mg/kg) with valproate to pediatric patients (n=6) revealed a decrease in protein binding and an inhibition of metabolism of valproate. Valproate free fraction was increased 4-fold in the presence of aspirin compared to valproate alone. The β-oxidation pathway consisting of 2-E-valproic acid, 3-OHvalproic acid, and 3-keto valproic acid was decreased from 25% of total metabolites excreted on valproate alone to 8.3% in the presence of aspirin. Caution should be observed if valproate and aspirin are to be co-administered.
Carbapenem Antibiotics
A clinically significant reduction in serum valproic acid concentration has been reported in patients receiving carbapenem antibiotics (for example, ertapenem, imipenem, meropenem; this is not a complete list) and may result in loss of seizure control. The mechanism of this interaction is not well understood. Serum valproic acid concentrations should be monitored frequently after initiating carbapenem therapy. Alternative antibacterial or anticonvulsant therapy should be considered if serum valproic acid concentrations drop significantly or seizure control deteriorates [see WARNINGS AND PRECAUTIONS].
Estrogen-Containing Hormonal Contraceptives
Estrogen-containing hormonal contraceptives may increase the clearance of valproate, which may result in decreased concentration of valproate and potentially increased seizure frequency. Prescribers should monitor serum valproate concentrations and clinical response when adding or discontinuing estrogen containing products.
Felbamate
A study involving the co-administration of 1,200 mg/day of felbamate with valproate to patients with epilepsy (n=10) revealed an increase in mean valproate peak concentration by 35% (from 86 to 115 mcg/mL) compared to valproate alone. Increasing the felbamate dose to 2,400 mg/day increased the mean valproate peak concentration to 133 mcg/mL (another 16% increase). A decrease in valproate dosage may be necessary when felbamate therapy is initiated.
Rifampin
A study involving the administration of a single dose of valproate (7 mg/kg) 36 hours after 5 nights of daily dosing with rifampin (600 mg) revealed a 40% increase in the oral clearance of valproate. Valproate dosage adjustment may be necessary when it is co-administered with rifampin.
Drugs For Which Either No Interaction Or A Likely Clinically Unimportant Interaction Has Been Observed
Antacids
A study involving the co-administration of valproate 500 mg with commonly administered antacids (Maalox, Trisogel, and Titralac - 160 mEq doses) did not reveal any effect on the extent of absorption of valproate.
Chlorpromazine
A study involving the administration of 100 to 300 mg/day of chlorpromazine to schizophrenic patients already receiving valproate (200 mg BID) revealed a 15% increase in trough plasma levels of valproate.
Haloperidol
A study involving the administration of 6 to 10 mg/day of haloperidol to schizophrenic patients already receiving valproate (200 mg BID) revealed no significant changes in valproate trough plasma levels.
Cimetidine and Ranitidine
Cimetidine and ranitidine do not affect the clearance of valproate.
Effects Of Valproate On Other Drugs
Valproate has been found to be a weak inhibitor of some P450 isozymes, epoxide hydrase, and glucuronosyltransferases.
The following list provides information about the potential for an influence of valproate coadministration on the pharmacokinetics or pharmacodynamics of several commonly prescribed medications. The list is not exhaustive, since new interactions are continuously being reported.
Drugs For Which A Potentially Important Valproate Interaction Has Been Observed
Amitriptyline/Nortriptyline
Administration of a single oral 50 mg dose of amitriptyline to 15 normal volunteers (10 males and 5 females) who received valproate (500 mg BID) resulted in a 21% decrease in plasma clearance of amitriptyline and a 34% decrease in the net clearance of nortriptyline. Rare postmarketing reports of concurrent use of valproate and amitriptyline resulting in an increased amitriptyline level have been received. Concurrent use of valproate and amitriptyline has rarely been associated with toxicity. Monitoring of amitriptyline levels should be considered for patients taking valproate concomitantly with amitriptyline. Consideration should be given to lowering the dose of amitriptyline/nortriptyline in the presence of valproate.
Carbamazepine/carbamazepine-10,11-Epoxide
Serum levels of carbamazepine (CBZ) decreased 17% while that of carbamazepine-10,11- epoxide (CBZ-E) increased by 45% upon co-administration of valproate and CBZ to epileptic patients.
Clonazepam
The concomitant use of valproate and clonazepam may induce absence status in patients with a history of absence type seizures.
Diazepam
Valproate displaces diazepam from its plasma albumin binding sites and inhibits its metabolism. Co-administration of valproate (1,500 mg daily) increased the free fraction of diazepam (10 mg) by 90% in healthy volunteers (n=6). Plasma clearance and volume of distribution for free diazepam were reduced by 25% and 20%, respectively, in the presence of valproate. The elimination half-life of diazepam remained unchanged upon addition of valproate.
Ethosuximide
Valproate inhibits the metabolism of ethosuximide. Administration of a single ethosuximide dose of 500 mg with valproate (800 to 1,600 mg/day) to healthy volunteers (n=6) was accompanied by a 25% increase in elimination half-life of ethosuximide and a 15% decrease in its total clearance as compared to ethosuximide alone. Patients receiving valproate and ethosuximide, especially along with other anticonvulsants, should be monitored for alterations in serum concentrations of both drugs.
Lamotrigine
In a steady-state study involving 10 healthy volunteers, the elimination half-life of lamotrigine increased from 26 to 70 hours with valproate co-administration (a 165% increase). The dose of lamotrigine should be reduced when co-administered with valproate. Serious skin reactions (such as Stevens-Johnson syndrome and toxic epidermal necrolysis) have been reported with concomitant lamotrigine and valproate administration. See lamotrigine package insert for details on lamotrigine dosing with concomitant valproate administration.
Phenobarbital
Valproate was found to inhibit the metabolism of phenobarbital. Co-administration of valproate (250 mg BID for 14 days) with phenobarbital to normal subjects (n=6) resulted in a 50% increase in half-life and a 30% decrease in plasma clearance of phenobarbital (60 mg single-dose). The fraction of phenobarbital dose excreted unchanged increased by 50% in presence of valproate.
There is evidence for severe CNS depression, with or without significant elevations of barbiturate or valproate serum concentrations. All patients receiving concomitant barbiturate therapy should be closely monitored for neurological toxicity. Serum barbiturate concentrations should be obtained, if possible, and the barbiturate dosage decreased, if appropriate.
Primidone, which is metabolized to a barbiturate, may be involved in a similar interaction with valproate.
Phenytoin
Valproate displaces phenytoin from its plasma albumin binding sites and inhibits its hepatic metabolism. Co-administration of valproate (400 mg TID) with phenytoin (250 mg) in normal volunteers (n=7) was associated with a 60% increase in the free fraction of phenytoin. Total plasma clearance and apparent volume of distribution of phenytoin increased 30% in the presence of valproate. Both the clearance and apparent volume of distribution of free phenytoin were reduced by 25%.
In patients with epilepsy, there have been reports of breakthrough seizures occurring with the combination of valproate and phenytoin. The dosage of phenytoin should be adjusted as required by the clinical situation.
Propofol
The concomitant use of valproate and propofol may lead to increased blood levels of propofol. Reduce the dose of propofol when co-administering with valproate. Monitor patients closely for signs of increased sedation or cardiorespiratory depression.
Rufinamide
Based on a population pharmacokinetic analysis, rufinamide clearance was decreased by valproate. Rufinamide concentrations were increased by <16% to 70%, dependent on concentration of valproate (with the larger increases being seen in pediatric patients at high doses or concentrations of valproate). Patients stabilized on rufinamide before being prescribed valproate should begin valproate therapy at a low dose, and titrate to a clinically effective dose [see DOSAGE AND ADMINISTRATION]. Similarly, patients on valproate should begin at a rufinamide dose lower than 10 mg/kg per day (pediatric patients) or 400 mg per day (adults).
Tolbutamide
From in vitro experiments, the unbound fraction of tolbutamide was increased from 20% to 50% when added to plasma samples taken from patients treated with valproate. The clinical relevance of this displacement is unknown.
Warfarin
In an in vitro study, valproate increased the unbound fraction of warfarin by up to 32.6%. The therapeutic relevance of this is unknown; however, coagulation tests should be monitored if valproate therapy is instituted in patients taking anticoagulants.
Zidovudine
In six patients who were seropositive for HIV, the clearance of zidovudine (100 mg q8h) was decreased by 38% after administration of valproate (250 or 500 mg q8h); the half-life of zidovudine was unaffected.
Drugs For Which Either No Interaction Or A Likely Clinically Unimportant Interaction Has Been Observed
Acetaminophen
Valproate had no effect on any of the pharmacokinetic parameters of acetaminophen when it was concurrently administered to three epileptic patients.
Clozapine
In psychotic patients (n=11), no interaction was observed when valproate was co-administered with clozapine.
Lithium
Co-administration of valproate (500 mg BID) and lithium carbonate (300 mg TID) to normal male volunteers (n=16) had no effect on the steady-state kinetics of lithium.
Lorazepam
Concomitant administration of valproate (500 mg BID) and lorazepam (1 mg BID) in normal male volunteers (n=9) was accompanied by a 17% decrease in the plasma clearance of lorazepam.
Olanzapine
No dose adjustment for olanzapine is necessary when olanzapine is administered concomitantly with valproate. Co-administration of valproate (500 mg BID) and olanzapine (5 mg) to healthy adults (n=10) caused 15% reduction in Cmax and 35% reduction in AUC of olanzapine.
Oral Contraceptive Steroids
Administration of a single-dose of ethinyloestradiol (50 mcg)/levonorgestrel (250 mcg) to 6 women on valproate (200 mg BID) therapy for 2 months did not reveal any pharmacokinetic interaction.
Topiramate
Concomitant administration of valproate and topiramate has been associated with hyperammonemia with and without encephalopathy [see CONTRAINDICATIONS and WARNINGS AND PRECAUTIONS]. Concomitant administration of topiramate with valproate has also been associated with hypothermia in patients who have tolerated either drug alone. It may be prudent to examine blood ammonia levels in patients in whom the onset of hypothermia has been reported [see WARNINGS AND PRECAUTIONS].
WARNINGS
Included as part of the PRECAUTIONS section.
PRECAUTIONS
Serious Infections
Serious and sometimes fatal infections due to bacterial, mycobacterial, invasive fungal, viral, or other opportunistic pathogens have been reported in patients receiving XELJANZ. The most common serious infections reported with XELJANZ included pneumonia, cellulitis, herpes zoster, urinary tract infection, diverticulitis, and appendicitis. Among opportunistic infections, tuberculosis and other mycobacterial infections, cryptococcosis, histoplasmosis, esophageal candidiasis, pneumocystosis, multidermatomal herpes zoster, cytomegalovirus infections, BK virus infection, and listeriosis were reported with XELJANZ. Some patients have presented with disseminated rather than localized disease, and were often taking concomitant immunomodulating agents such as methotrexate or corticosteroids.
In the UC population, XELJANZ treatment with 10 mg twice daily was associated with greater risk of serious infections compared to 5 mg twice daily. Additionally, opportunistic herpes zoster infections (including meningoencephalitis, ophthalmologic, and disseminated cutaneous) were seen in patients who were treated with XELJANZ 10 mg twice daily.
Other serious infections that were not reported in clinical studies may also occur (e.g., coccidioidomycosis).
Avoid use of XELJANZ/XELJANZ XR/XELJANZ Oral Solution in patients with an active, serious infection, including localized infections. The risks and benefits of treatment should be considered prior to initiating XELJANZ/XELJANZ XR/XELJANZ Oral Solution in patients:
- with chronic or recurrent infection
- who have been exposed to tuberculosis
- with a history of a serious or an opportunistic infection
- who have resided or traveled in areas of endemic tuberculosis or endemic mycoses; or
- with underlying conditions that may predispose them to infection.
Patients should be closely monitored for the development of signs and symptoms of infection during and after treatment with XELJANZ/XELJANZ XR/XELJANZ Oral Solution. XELJANZ/XELJANZ XR/XELJANZ Oral Solution should be interrupted if a patient develops a serious infection, an opportunistic infection, or sepsis. A patient who develops a new infection during treatment with XELJANZ/XELJANZ XR/XELJANZ Oral Solution should undergo prompt and complete diagnostic testing appropriate for an immunocompromised patient; appropriate antimicrobial therapy should be initiated, and the patient should be closely monitored.
Caution is also recommended in patients with a history of chronic lung disease, or in those who develop interstitial lung disease, as they may be more prone to infections.
Risk of infection may be higher with increasing degrees of lymphopenia and consideration should be given to lymphocyte counts when assessing individual patient risk of infection. Discontinuation and monitoring criteria for lymphopenia are recommended [see DOSAGE AND ADMINISTRATION].
Tuberculosis
Patients should be evaluated and tested for latent or active infection prior to and per applicable guidelines during administration of XELJANZ/XELJANZ XR/XELJANZ Oral Solution.
Anti-tuberculosis therapy should also be considered prior to administration of XELJANZ/XELJANZ XR/XELJANZ Oral Solution inpatients with a past history of latent or active tuberculosis in whom an adequate course of treatment cannot be confirmed, and for patients with a negative test for latent tuberculosis but who have risk factors for tuberculosis infection. Consultation with a physician with expertise in the treatment of tuberculosis is recommended to aid in the decision about whether initiating anti-tuberculosis therapy is appropriate for an individual patient.
Patients should be closely monitored for the development of signs and symptoms of tuberculosis, including patients who tested negative for latent tuberculosis infection prior to initiating therapy.
Patients with latent tuberculosis should be treated with standard antimycobacterial therapy before administering XELJANZ/XELJANZXR/XELJANZ Oral Solution.
Viral Reactivation
Viral reactivation, including cases of herpes virus reactivation (e.g., herpes zoster), were observed in clinical studies with XELJANZ/XELJANZ Oral Solution. Postmarketing cases of hepatitis B reactivation have been reported in patients treated with XELJANZ. The impact of XELJANZ/XELJANZ XR/XELJANZ Oral Solution on chronic viral hepatitis reactivation is unknown. Patients who screened positive for hepatitis B or C were excluded from clinical trials. Screening for viral hepatitis should be performed in accordance with clinical guidelines before starting therapy with XELJANZ/XELJANZ XR/XELJANZ Oral Solution. The risk of herpes zoster is increased in patients treated with XELJANZ/XELJANZ XR/XELJANZ Oral Solution and appears to be higher in patients treated with XELJANZ in Japan and Korea.
Mortality
Rheumatoid arthritis patients 50 years of age and older with at least one cardiovascular risk factor treated with XELJANZ 5 mg twice a day or XELJANZ 10 mg twice a day had a higher observed rate of all-cause mortality, including sudden cardiovascular death, compared to those treated with TNF blockers in a large, randomized, postmarketing safety study (RA Safety Study 1). The incidence rate of all-cause mortality per 100 patient-years was 0.88 for XELJANZ 5 mg twice a day, 1.23 for XELJANZ 10 mg twice a day, and 0.69 for TNF blockers [see Clinical Studies]. Consider the benefits and risks for the individual patient prior to initiating or continuing therapy with XELJANZ/XELJANZ XR/XELJANZ Oral Solution.
A XELJANZ/XELJANZ Oral Solution 10 mg twice daily (or a XELJANZ XR 22 mg once daily) dosage is not recommended for the treatment of RA, PsA, or AS [see DOSAGE AND ADMINISTRATION].
For the treatment of UC, use XELJANZ/XELJANZ XR at the lowest effective dose and for the shortest duration needed to achieve/maintain therapeutic response [see DOSAGE AND ADMINISTRATION].
Malignancy And Lymphoproliferative Disorders
Malignancies, including lymphomas and solid cancers, were observed in clinical studies of XELJANZ [see ADVERSE REACTIONS].
In RA Safety Study 1, a higher rate of malignancies (excluding non-melanoma skin cancer (NMSC)) was observed in patients treated with XELJANZ 5 mg twice a day or XELJANZ 10 mg twice a day as compared with TNF blockers. The incidence rate of malignancies(excluding NMSC) per 100 patient-years was 1.13 for XELJANZ 5 mg twice a day, 1.13 for XELJANZ 10 mg twice a day, and 0.77 for TNF blockers. Patients who are current or past smokers are at additional increased risk [see Clinical Studies].
Lymphomas and lung cancers, which are a subset of all malignancies in RA Safety Study 1, were observed at a higher rate in patients treated with XELJANZ 5 mg twice a day and XELJANZ 10 mg twice a day compared to those treated with TNF blockers. The incidence rate of lymphomas per 100 patient-years was 0.07 for XELJANZ 5 mg twice a day, 0.11 for XELJANZ 10 mg twice a day, and 0.02 for TNF blockers. The incidence rate of lung cancers per 100 patient-years among current and past smokers was 0.48 for XELJANZ 5 mg twice a day, 0.59 for XELJANZ 10 mg twice a day, and 0.27 for TNF blockers [see Clinical Studies].
Consider the benefits and risks for the individual patient prior to initiating or continuing therapy with XELJANZ/XELJANZXR/XELJANZ Oral Solution, particularly in patients with a known malignancy (other than a successfully treated NMSC), patients who develop a malignancy while on treatment, and patients who are current or past smokers. A XELJANZ/XELJANZ Oral Solution 10 mg twice daily (or a XELJANZ XR 22 mg once daily) dosage is not recommended for the treatment of RA or PsA [see DOSAGE AND ADMINISTRATION].
In Phase 2B, controlled dose-ranging trials in de-novo renal transplant patients, all of whom received induction therapy with basiliximab, high-dose corticosteroids, and mycophenolic acid products, Epstein Barr Virus-associated post-transplant lymphoproliferative disorder was observed in 5 out of 218 patients treated with XELJANZ (2.3%) compared to 0 out of 111 patients treated with cyclosporine.
Other malignancies were observed in clinical studies and the postmarketing setting, including, but not limited to, lung cancer, breast cancer, melanoma, prostate cancer, and pancreatic cancer.
Non-Melanoma Skin Cancer
Non-melanoma skin cancers (NMSCs) have been reported in patients treated with XELJANZ. Periodic skin examination is recommended for patients who are at increased risk for skin cancer. In the UC population, treatment with XELJANZ 10 mg twice daily was associated with greater risk of NMSC.
Major Adverse Cardiovascular Events
In RA Safety Study 1, RA patients who were 50 years of age and older with at least one cardiovascular risk factor treated with XELJANZ5 mg twice daily or XELJANZ 10 mg twice daily had a higher rate of major adverse cardiovascular events (MACE) defined as cardiovascular death, non-fatal myocardial infarction (MI), and non-fatal stroke, compared to those treated with TNF blockers. The incidence rate of MACE per 100 patient-years was 0.91 for XELJANZ 5 mg twice a day, 1.11 for XELJANZ 10 mg twice a day, and 0.79for TNF blockers. The incidence rate of fatal or non-fatal myocardial infarction per 100 patient-years was 0.36 for XELJANZ 5 mg twice a day, 0.39 for XELJANZ 10 mg twice a day, and 0.20 for TNF blockers [see Clinical Studies]. Patients who are current or pastsmokers are at additional increased risk.
Consider the benefits and risks for the individual patient prior to initiating or continuing therapy with XELJANZ/XELJANZXR/XELJANZ Oral Solution, particularly in patients who are current or past smokers and patients with other cardiovascular risk factors. Patients should be informed about the symptoms of serious cardiovascular events and the steps to take if they occur. Discontinue XELJANZ/XELJANZ XR/XELJANZ Oral Solution in patients that have experienced a myocardial infarction or stroke. AXELJANZ/XELJANZ Oral Solution 10 mg twice daily (or a XELJANZ XR 22 mg once daily) dosage is not recommended for the treatment of RA or PsA [see DOSAGE AND ADMINISTRATION].
Thrombosis
Thrombosis, including pulmonary embolism (PE), deep venous thrombosis (DVT), and arterial thrombosis, have occurred in patients treated with XELJANZ and other Janus kinase (JAK) inhibitors used to treat inflammatory conditions. Many of these events were serious and some resulted in death [see WARNINGS AND PRECAUTIONS].
Patients with rheumatoid arthritis 50 years of age and older with at least one cardiovascular risk factor treated with XELJANZ at both 5mg or 10 mg twice daily compared to TNF blockers in RA Safety Study 1 had an observed increase in incidence of these events. The incidence rate of DVT per 100 patient-years was 0.22 for XELJANZ 5 mg twice a day, 0.28 for XELJANZ 10 mg twice a day, and 0.16for TNF blockers. The incidence rate of PE per 100 patient-years was 0.18 for XELJANZ 5 mg twice a day, 0.49 for XELJANZ 10 mg twice a day, and 0.05 for TNF blockers [see Clinical Studies].
A XELJANZ/XELJANZ Oral Solution 10 mg twice daily (or a XELJANZ XR 22 mg once daily) dosage is not recommended for the treatment of RA, PsA, or AS [see DOSAGE AND ADMINISTRATION].
In a long-term extension study in patients with UC, five cases of pulmonary embolism were reported in patients taking XELJANZ 10 mg twice daily, including one death in a patient with advanced cancer.
Promptly evaluate patients with symptoms of thrombosis and discontinue XELJANZ/XELJANZ XR/XELJANZ Oral Solution in patients with symptoms of thrombosis.
Avoid XELJANZ/XELJANZ XR/XELJANZ Oral Solution in patients that may be at increased risk of thrombosis. For the treatment of UC, use XELJANZ/XELJANZ XR at the lowest effective dose and for the shortest duration needed to achieve/maintain the rapeutic response [see DOSAGE AND ADMINISTRATION].
Gastrointestinal Perforations
Events of gastrointestinal perforation have been reported in clinical studies with XELJANZ, although the role of JAK inhibition in these events is not known. In these studies, many patients with rheumatoid arthritis were receiving background therapy with Nonsteroidal Anti-Inflammatory Drugs (NSAIDs).
There was no discernable difference in frequency of gastrointestinal perforation between the placebo and the XELJANZ arms in clinical trials of patients with UC, and many of them were receiving background corticosteroids.
XELJANZ/XELJANZ XR/XELJANZ Oral Solution should be used with caution in patients who may be at increased risk for gastrointestinal perforation (e.g., patients with a history of diverticulitis or taking NSAIDs). Patients presenting with new onset abdominal symptoms should be evaluated promptly for early identification of gastrointestinal perforation [see ADVERSE REACTIONS].
Hypersensitivity
Reactions such as angioedema and urticaria that may reflect drug hypersensitivity have been observed in patients receiving XELJANZ/XELJANZ XR. Some events were serious. If a serious hypersensitivity reaction occurs, promptly discontinue tofacitinib while evaluating the potential cause or causes of the reaction [see ADVERSE REACTIONS].
Laboratory Abnormalities
Lymphocyte Abnormalities
Treatment with XELJANZ was associated with initial lymphocytosis at one month of exposure followed by a gradual decrease in mean absolute lymphocyte counts below the baseline of approximately 10% during 12 months of therapy. Lymphocyte counts less than 500cells/mm³ were associated with an increased incidence of treated and serious infections.
Avoid initiation of XELJANZ/XELJANZ XR/XELJANZ Oral Solution treatment in patients with a low lymphocyte count (i.e., less than500 cells/mm³). In patients who develop a confirmed absolute lymphocyte count less than 500 cells/mm³, treatment with XELJANZ/XELJANZ XR/XELJANZ Oral Solution is not recommended.
Monitor lymphocyte counts at baseline and every 3 months thereafter. For recommended modifications based on lymphocyte counts [see DOSAGE AND ADMINISTRATION].
Neutropenia
Treatment with XELJANZ was associated with an increased incidence of neutropenia (less than 2000 cells/mm³) compared to placebo.
Avoid initiation of XELJANZ/XELJANZ XR/XELJANZ Oral Solution treatment in patients with a low neutrophil count (i.e., ANC less than 1000 cells/mm³). For patients who develop a persistent ANC of 500 to 1000 cells/mm³, interrupt XELJANZ/XELJANZXR/XELJANZ Oral Solution dosing until ANC is greater than or equal to 1000 cells/mm³. In patients who develop an ANC less than 500cells/mm³, treatment with XELJANZ/XELJANZ XR/XELJANZ Oral Solution is not recommended.
Monitor neutrophil counts at baseline and after 4–8 weeks of treatment and every 3 months thereafter. For recommended modifications based on ANC results [see DOSAGE AND ADMINISTRATION].
Anemia
Avoid initiation of XELJANZ/XELJANZ XR/XELJANZ Oral Solution treatment in patients with a low hemoglobin level (i.e., less than 9g/dL). Treatment with XELJANZ/XELJANZ XR/XELJANZ Oral Solution should be interrupted in patients who develop hemoglobin levels less than 8 g/dL or whose hemoglobin level drops greater than 2 g/dL on treatment.
Monitor hemoglobin at baseline and after 4–8 weeks of treatment and every 3 months thereafter. For recommended modifications based on hemoglobin results [see DOSAGE AND ADMINISTRATION].
Liver Enzyme Elevations
Treatment with XELJANZ was associated with an increased incidence of liver enzyme elevation compared to placebo. Most of these abnormalities occurred in studies with background DMARD (primarily methotrexate) therapy.
Routine monitoring of liver tests and prompt investigation of the causes of liver enzyme elevations is recommended to identify potential cases of drug-induced liver injury. If drug-induced liver injury is suspected, the administration of XELJANZ/XELJANZ XR/XELJANZ Oral Solution should be interrupted until this diagnosis has been excluded.
Lipid Elevations
Treatment with XELJANZ was associated with dose-dependent increases in lipid parameters including total cholesterol, low-density lipoprotein (LDL) cholesterol, and high-density lipoprotein (HDL) cholesterol. Maximum effects were generally observed within 6 weeks. There were no clinically relevant changes in LDL/HDL cholesterol ratios. The effect of these lipid parameter elevations on cardiovascular morbidity and mortality has not been determined.
Assessment of lipid parameters should be performed approximately 4–8 weeks following initiation of XELJANZ/XELJANZXR/XELJANZ Oral Solution therapy.
Manage patients according to clinical guidelines [e.g., National Cholesterol Educational Program (NCEP)] for the management of hyperlipidemia.
Vaccinations
Avoid use of live vaccines concurrently with XELJANZ/XELJANZ XR/XELJANZ Oral Solution. The interval between live vaccinations and initiation of tofacitinib therapy should be in accordance with current vaccination guidelines regarding immunosuppressive agents.
A patient experienced dissemination of the vaccine strain of varicella zoster virus, 16 days after vaccination with live attenuated(Zostavax) virus vaccine and 2 days after treatment start with tofacitinib 5 mg twice daily. The patient was varicella virus naïve, as evidenced by no previous history of varicella infection and no anti-varicella antibodies at baseline. Tofacitinib was discontinued and the patient recovered after treatment with standard doses of antiviral medication.
Update immunizations in agreement with current immunization guidelines prior to initiating XELJANZ/XELJANZ XR/XELJANZ Oral Solution therapy.
Risk Of Gastrointestinal Obstruction With A Non-Deformable Extended-Release Formulation Such As XELJANZ XR
As with any other non-deformable material, caution should be used when administering XELJANZ XR to patients with pre-existing severe gastrointestinal narrowing (pathologic or iatrogenic). There have been rare reports of obstructive symptoms in patients with known strictures in association with the ingestion of other drugs utilizing a non-deformable extended-release formulation.
Patient Counseling Information
Advise the patient to read the FDA-approved patient labeling (Medication Guide and Instructions for Use).
Serious Infections
Inform patients that XELJANZ/XELJANZ XR/XELJANZ Oral Solution may lower the ability of their immune system to fight infections. Advise patients not to start taking XELJANZ/XELJANZ XR/XELJANZ Oral Solution if they have an active infection. Instruct patients to contact their healthcare provider immediately during treatment if symptoms suggesting infection appear in order to ensure rapid evaluation and appropriate treatment [see WARNINGS AND PRECAUTIONS].
Advise patients that the risk of herpes zoster, some cases of which can be serious, is increased in patients treated with XELJANZ/XELJANZ XR [see WARNINGS AND PRECAUTIONS].
Malignancies And Lymphoproliferative Disorders
Inform patients that XELJANZ/XELJANZ XR/XELJANZ Oral Solution may increase their risk of certain cancers, and that lymphoma and other cancers have been observed in patients taking XELJANZ. Instruct patients to inform their healthcare provider if they have ever had any type of cancer [see WARNINGS AND PRECAUTIONS].
Major Adverse Cardiovascular Events
Inform patients that XELJANZ/XELJANZ XR/XELJANZ Oral Solution may increase their risk of major adverse cardiovascular events(MACE) defined as myocardial infarction, stroke, and cardiovascular death. Instruct all patients, especially current or past smokers or patients with other cardiovascular risk factors, to be alert for the development of signs and symptoms of cardiovascular events [see WARNINGS AND PRECAUTIONS].
Thrombosis
Advise patients to stop taking XELJANZ/XELJANZ XR/XELJANZ Oral Solution and to call their healthcare provider right away if they experience any symptoms of thrombosis (sudden shortness of breath, chest pain worsened with breathing, swelling of leg or arm, leg pain or tenderness, red or discolored skin in the affected leg or arm) [see WARNINGS AND PRECAUTIONS].
Hypersensitivity
Advise patients to stop taking XELJANZ/XELJANZ XR/XELJANZ Oral Solution and to call their healthcare provider right away if they experience any symptoms of allergic reactions while taking XELJANZ/XELJANZ XR/XELJANZ Oral Solution [see WARNINGS AND PRECAUTIONS].
Important Information On Laboratory Abnormalities
Inform patients that XELJANZ/XELJANZ XR/XELJANZ Oral Solution may affect certain lab test results, and that blood tests are required before and during XELJANZ/XELJANZ XR/XELJANZ Oral Solution treatment [see WARNINGS AND PRECAUTIONS].
Pregnancy
Advise pregnant women and females of reproductive potential of the potential risk to a fetus. Advise females to inform their prescriber of a known or suspected pregnancy. Inform patients that Pfizer has a registry for pregnant women who have taken XELJANZ/XELJANZXR/XELJANZ Oral Solution during pregnancy. Advise patients to contact the registry at 1-877-311-8972 to enroll [see Use In Specific Populations].
Lactation
Advise women not to breastfeed during treatment with XELJANZ/XELJANZ XR/XELJANZ Oral Solution and for at least 18 hours after the last dose of XELJANZ/XELJANZ Oral Solution or 36 hours after the last dose of XELJANZ XR [see Use In Specific Populations].
Infertility
Advise females of reproductive potential that XELJANZ/XELJANZ XR/XELJANZ Oral Solution may impair fertility [see Use In Specific Populations, Nonclinical Toxicology]. It is not known if this effect is reversible.
Residual Tablet Shell
Patients receiving XELJANZ XR may notice an inert tablet shell passing in the stool or via colostomy. Patients should be informed that the active medication has already been absorbed by the time the patient sees the inert tablet shell.
Nonclinical Toxicology
Carcinogenesis, Mutagenesis, Impairment Of Fertility
In a 39-week toxicology study in monkeys, tofacitinib at exposure levels approximately 6 times the recommended dose of 5 mg twice daily, and approximately 3 times the 10 mg twice daily dose (on an AUC basis at oral doses of 5 mg/kg twice daily) produced lymphomas. No lymphomas were observed in this study at exposure levels 1 times the recommended dose of 5 mg twice daily, and approximately 0.5times the 10 mg twice daily dose (on an AUC basis at oral doses of 1 mg/kg twice daily).
The carcinogenic potential of tofacitinib was assessed in 6-month rasH2 transgenic mouse carcinogenicity and 2-year rat carcinogenicity studies. Tofacitinib, at exposure levels approximately 34 times the recommended dose of 5 mg twice daily, and approximately 17 times the10 mg twice daily dose (on an AUC basis at oral doses of 200 mg/kg/day) was not carcinogenic in mice.
In the 24-month oral carcinogenicity study in Sprague-Dawley rats, tofacitinib caused benign Leydig cell tumors, hibernomas (malignancy of brown adipose tissue), and benign thymomas at doses greater than or equal to 30 mg/kg/day (approximately 42 times the exposure levels at the recommended dose of 5 mg twice daily, and approximately 21 times the 10 mg twice daily dose on an AUC basis). The relevance of benign Leydig cell tumors to human risk is not known.
Tofacitinib was not mutagenic in the bacterial reverse mutation assay. It was positive for clastogenicity in the in vitro chromosome aberration assay with human lymphocytes in the presence of metabolic enzymes, but negative in the absence of metabolic enzymes. Tofacitinib was negative in the in vivo rat micronucleus assay and in the in vitro CHO-HGPRT assay and the in vivo rat hepatocyte unscheduled DNA synthesis assay.
In rats, tofacitinib at exposure levels approximately 17 times the recommended dose of 5 mg twice daily, and approximately 8.3 times the10 mg twice daily dose (on an AUC basis at oral doses of 10 mg/kg/day) reduced female fertility due to increased post-implantation loss. There was no impairment of female rat fertility at exposure levels of tofacitinib equal to the recommended dose of 5 mg twice daily, and approximately 0.5 times the 10 mg twice daily dose (on an AUC basis at oral doses of 1 mg/kg/day). Tofacitinib exposure levels at approximately 133 times the recommended dose of 5 mg twice daily, and approximately 67 times the 10 mg twice daily dose (on an AUC basis at oral doses of 100 mg/kg/day) had no effect on male fertility, sperm motility, or sperm concentration.
Use In Specific Populations
All information provided in this section is applicable to XELJANZ/XELJANZ XR/XELJANZ Oral Solution as they contain the same active ingredient (tofacitinib).
Pregnancy
Pregnancy Exposure Registry
There is a pregnancy exposure registry that monitors pregnancy outcomes in women exposed to XELJANZ/XELJANZ XR/XELJANZ Oral Solution during pregnancy. Patients should be encouraged to enroll in the XELJANZ/XELJANZ XR/XELJANZ Oral Solution pregnancy registry if they become pregnant. To enroll or obtain information from the registry, patients can call the toll free number 1-877-311-8972.
Risk Summary
Available data with XELJANZ/XELJANZ XR/XELJANZ Oral Solution use in pregnant women are insufficient to establish a drug associated risk of major birth defects, miscarriage or adverse maternal or fetal outcomes. There are risks to the mother and the fetus associated with rheumatoid arthritis and UC in pregnancy (see Clinical Considerations). In animal reproduction studies, fetocidal and teratogenic effects were noted when pregnant rats and rabbits received tofacitinib during the period of organogenesis at exposures multiples of 73-times and 6.3-times the maximum recommended dose of 10 mg twice daily, respectively. Further, in a peri- and post-natal study in rats, tofacitinib resulted in reductions in live litter size, postnatal survival, and pup body weights at exposure multiples of approximately 73-times the recommended dose of 5 mg twice daily and approximately 36 times the maximum recommended dose of 10mg twice daily, respectively (see Data).
The estimated background risks of major birth defects and miscarriage for the indicated populations are unknown. All pregnancies have abackground risk of birth defect, loss, or other adverse outcomes. The background risks in the U.S. general population of major birth defects and miscarriages are 2 to 4% and 15 to 20% of clinically recognized pregnancies, respectively.
Clinical Considerations
Disease-Associated Maternal And/Or Embryo/Fetal Risk
Published data suggest that increased disease activity is associated with the risk of developing adverse pregnancy outcomes in women with rheumatoid arthritis or ulcerative colitis. Adverse pregnancy outcomes include preterm delivery (before 37 weeks of gestation), low birth weight (less than 2500 g) infants, and small for gestational age at birth.
Data
Animal Data
In a rat embryofetal developmental study, in which pregnant rats received tofacitinib during organogenesis, tofacitinib was teratogenic at exposure levels approximately 146 times the recommended dose of 5 mg twice daily, and approximately 73 times the maximum recommended dose of 10 mg twice daily (on an AUC basis at oral doses of 100 mg/kg/day in rats). Teratogenic effects consisted of external and soft tissue malformations of anasarca and membranous ventricular septal defects, respectively; and skeletal malformations or variations (absent cervical arch; bent femur, fibula, humerus, radius, scapula, tibia, and ulna; sternoschisis; absent rib; misshapen femur; branched rib; fused rib; fused sternebra; and hemicentric thoracic centrum). In addition, there was an increase in post-implantation loss, consisting of early and late resorptions, resulting in a reduced number of viable fetuses. Mean fetal body weight was reduced. No developmental toxicity was observed in rats at exposure levels approximately 58 times the recommended dose of 5 mg twice daily, and approximately 29 times the maximum recommended dose of 10 mg twice daily (on an AUC basis at oral doses of 30 mg/kg/day in pregnant rats).
In a rabbit embryofetal developmental study in which pregnant rabbits received tofacitinib during the period of organogenesis, tofacitinib was teratogenic at exposure levels approximately 13 times the recommended dose of 5 mg twice daily, and approximately 6.3 times the maximum recommended dose of 10 mg twice daily (on an AUC basis at oral doses of 30 mg/kg/day in rabbits) in the absence of signs of maternal toxicity. Teratogenic effects included thoracogastroschisis, omphalocele, membranous ventricular septal defects, and cranial/skeletal malformations (microstomia, microphthalmia), mid-line and tail defects. In addition, there was an increase in post-implantation loss associated with late resorptions. No developmental toxicity was observed in rabbits at exposure levels approximately 3times the recommended dose of 5 mg twice daily, and approximately 1.5 times the maximum recommended dose of 10 mg twice daily (on an AUC basis at oral doses of 10 mg/kg/day in pregnant rabbits).
In a peri- and postnatal development study in pregnant rats that received tofacitinib from gestation day 6 through day 20 of lactation, there were reductions in live litter size, postnatal survival, and pup body weights at exposure levels approximately 73 times the recommended dose of 5 mg twice daily, and approximately 36 times the maximum recommended dose of 10 mg twice daily (on an AUC basis at oral doses of 50 mg/kg/day in rats). There was no effect on behavioral and learning assessments, sexual maturation or the ability of the F1generation rats to mate and produce viable F2 generation fetuses in rats at exposure levels approximately 17 times the recommended dose of 5 mg twice daily, and approximately 8.3 times the maximum recommended dose of 10 mg twice daily (on an AUC basis at oral doses of10 mg/kg/day in rats).
Lactation
Risk Summary
There are no data on the presence of tofacitinib in human milk, the effects on a breastfed infant, or the effects on milk production. Tofacitinib is present in the milk of lactating rats (see Data). When a drug is present in animal milk, it is likely that the drug will be present in human milk. Given the serious adverse reactions seen in patients treated with XELJANZ/XELJANZ XR/XELJANZ Oral Solution, such as increased risk of serious infections, advise patients that breastfeeding is not recommended during treatment and for at least 18 hours after the last dose of XELJANZ/XELJANZ Oral Solution or 36 hours after the last dose of XELJANZ XR (approximately 6 elimination half-lives).
Data
Following administration of tofacitinib to lactating rats, concentrations of tofacitinib in milk over time paralleled those in serum, and were approximately 2 times higher in milk relative to maternal serum at all time points measured.
Females And Males Of Reproductive Potential
Contraception
Females
In an animal reproduction study, tofacitinib at AUC multiples of 13 times the recommended dose of 5 mg twice daily and 6.3 times the maximum recommended dose of 10 mg twice daily demonstrated adverse embryo-fetal findings [see Use In Specific Populations].However, there is uncertainty as to how these animal findings relate to females of reproductive potential treated with the recommended clinical dose. Consider pregnancy planning and prevention for females of reproductive potential.
Infertility
Females
Based on findings in rats, treatment with XELJANZ/XELJANZ XR/XELJANZ Oral Solution may result in reduced fertility in females of reproductive potential. It is not known if this effect is reversible [see Nonclinical Toxicology].
Pediatric Use
The safety and effectiveness of XELJANZ/XELJANZ Oral Solution for the treatment of active pcJIA have been established in patients 2years to 17 years of age. Use of XELJANZ/XELJANZ Oral Solution for the treatment of pediatric patients with active pcJIA in this age group is supported by evidence from adequate and well-controlled studies of XELJANZ in adult RA patients with additional data from a clinical trial of XELJANZ/XELJANZ Oral Solution in pediatric patients (2 years to 17 years of age) with active pcJIA consisting of an 18-week, open label, run-in period followed by a 26-week placebo-controlled, randomized withdrawal period [see Clinical Studies].The safety and effectiveness of XELJANZ/XELJANZ Oral Solution have not been established in pcJIA patients less than 2 years of age.
Adverse reactions observed in pediatric patients receiving XELJANZ/XELJANZ Oral Solution were consistent with those reported in RA patients [see ADVERSE REACTIONS].
Safety and efficacy of XELJANZ/XELJANZ Oral Solution in pediatric patients for indications other than pcJIA have not been established.
The safety and effectiveness of XELJANZ XR in pediatric patients have not been established.
Geriatric Use
Of the 3315 patients who enrolled in rheumatoid arthritis Studies I to V, a total of 505 rheumatoid arthritis patients were 65 years of age and older, including 71 patients 75 years and older. The frequency of serious infection among XELJANZ-treated subjects 65 years of age and older was higher than among those under the age of 65.
Of the 1156 XELJANZ-treated patients in the UC program, a total of 77 patients (7%) were 65 years of age or older. The number of patients aged 65 years and older was not sufficient to determine whether they responded differently from younger patients.
As there is a higher incidence of infections in the elderly population in general, caution should be used when treating the elderly [see WARNINGS AND PRECAUTIONS].
Use In Diabetics
As there is a higher incidence of infection in diabetic population in general, caution should be used when treating patients with diabetes.
Renal Impairment
Moderate And Severe Impairment
XELJANZ-treated patients with moderate or severe renal impairment had greater tofacitinib blood concentrations than XELJANZ-treated patients with normal renal function. Therefore, dosage adjustment of XELJANZ/XELJANZ XR/XELJANZ Oral Solution is recommended in patients with moderate or severe renal impairment (including but not limited to those with severe insufficiency who are undergoing hemodialysis) [see DOSAGE AND ADMINISTRATION].
Mild Impairment
No dosage adjustment is required in patients with mild renal impairment.
Hepatic Impairment
Severe Impairment
XELJANZ/XELJANZ XR/XELJANZ Oral Solution has not been studied in patients with severe hepatic impairment; therefore, use of XELJANZ/XELJANZ XR/XELJANZ Oral Solution in patients with severe hepatic impairment is not recommended.
Moderate Impairment
XELJANZ-treated patients with moderate hepatic impairment had greater tofacitinib blood concentration than XELJANZ-treated patients with normal hepatic function [see CLINICAL PHARMACOLOGY]. Higher blood concentrations may increase the risk of some adverse reactions. Therefore, dosage adjustment of XELJANZ/XELJANZ XR/XELJANZ Oral Solution is recommended in patients with moderate hepatic impairment [see DOSAGE AND ADMINISTRATION].
Mild Impairment
No dosage adjustment of XELJANZ/XELJANZ XR/XELJANZ Oral Solution is required in patients with mild hepatic impairment.
Hepatitis B Or C Serology
The safety and efficacy of XELJANZ/XELJANZ XR/XELJANZ Oral Solution have not been studied in patients with positive hepatitis B virus or hepatitis C virus serology.
OVERDOSE
Overdosage with valproate may result in somnolence, heart block, deep coma, and hypernatremia. Fatalities have been reported; however patients have recovered from valproate levels as high as 2,120 mcg/mL.
In overdose situations, the fraction of drug not bound to protein is high and hemodialysis or tandem hemodialysis plus hemoperfusion may result in significant removal of drug. The benefit of gastric lavage or emesis will vary with the time since ingestion. General supportive measures should be applied with particular attention to the maintenance of adequate urinary output.
Naloxone has been reported to reverse the CNS depressant effects of valproate overdosage. Because naloxone could theoretically also reverse the antiepileptic effects of valproate, it should be used with caution in patients with epilepsy.
CONTRAINDICATIONS
- Depakote should not be administered to patients with hepatic disease or significant hepatic dysfunction [see WARNINGS AND PRECAUTIONS].
- Depakote is contraindicated in patients known to have mitochondrial disorders caused by mutations in mitochondrial DNA polymerase γ (POLG; e.g., Alpers-Huttenlocher Syndrome) and children under two years of age who are suspected of having a POLG-related disorder [see WARNINGS AND PRECAUTIONS].
- Depakote is contraindicated in patients with known hypersensitivity to the drug [see WARNINGS AND PRECAUTIONS].
- Depakote is contraindicated in patients with known urea cycle disorders [see WARNINGS AND PRECAUTIONS].
- For use in prophylaxis of migraine headaches: Depakote is contraindicated in women who are pregnant and in women of childbearing potential who are not using effective contraception [see WARNINGS AND PRECAUTIONS and Use In Specific Populations].
CLINICAL PHARMACOLOGY
Mechanism Of Action
Divalproex sodium dissociates to the valproate ion in the gastrointestinal tract. The mechanisms by which valproate exerts its therapeutic effects have not been established. It has been suggested that its activity in epilepsy is related to increased brain concentrations of gamma-aminobutyric acid (GABA).
Pharmacodynamics
The relationship between plasma concentration and clinical response is not well documented. One contributing factor is the nonlinear, concentration dependent protein binding of valproate which affects the clearance of the drug. Thus, monitoring of total serum valproate cannot provide a reliable index of the bioactive valproate species.
For example, because the plasma protein binding of valproate is concentration dependent, the free fraction increases from approximately 10% at 40 mcg/mL to 18.5% at 130 mcg/mL. Higher than expected free fractions occur in the elderly, in hyperlipidemic patients, and in patients with hepatic and renal diseases.
Epilepsy
The therapeutic range in epilepsy is commonly considered to be 50 to 100 mcg/mL of total valproate, although some patients may be controlled with lower or higher plasma concentrations.
Mania
In placebo-controlled clinical trials of acute mania, patients were dosed to clinical response with trough plasma concentrations between 50 and 125 mcg/mL [see DOSAGE AND ADMINISTRATION].
Pharmacokinetics
Absorption/Bioavailability
Equivalent oral doses of Depakote (divalproex sodium) products and valproic acid capsules deliver equivalent quantities of valproate ion systemically. Although the rate of valproate ion absorption may vary with the formulation administered (liquid, solid, or sprinkle), conditions of use (e.g., fasting or postprandial) and the method of administration (e.g., whether the contents of the capsule are sprinkled on food or the capsule is taken intact), these differences should be of minor clinical importance under the steady state conditions achieved in chronic use in the treatment of epilepsy.
However, it is possible that differences among the various valproate products in Tmax and Cmax could be important upon initiation of treatment. For example, in single dose studies, the effect of feeding had a greater influence on the rate of absorption of the tablet (increase in Tmax from 4 to 8 hours) than on the absorption of the sprinkle capsules (increase in Tmax from 3.3 to 4.8 hours). While the absorption rate from the G.I. tract and fluctuation in valproate plasma concentrations vary with dosing regimen and formulation, the efficacy of valproate as an anticonvulsant in chronic use is unlikely to be affected. Experience employing dosing regimens from once-a-day to four-times-a-day, as well as studies in primate epilepsy models involving constant rate infusion, indicate that total daily systemic bioavailability (extent of absorption) is the primary determinant of seizure control and that differences in the ratios of plasma peak to trough concentrations between valproate formulations are inconsequential from a practical clinical standpoint. Whether or not rate of absorption influences the efficacy of valproate as an antimanic or antimigraine agent is unknown.
Co-administration of oral valproate products with food and substitution among the various Depakote and valproic acid formulations should cause no clinical problems in the management of patients with epilepsy [see DOSAGE AND ADMINISTRATION]. Nonetheless, any changes in dosage administration, or the addition or discontinuance of concomitant drugs should ordinarily be accompanied by close monitoring of clinical status and valproate plasma concentrations.
Distribution
Protein Binding
The plasma protein binding of valproate is concentration dependent and the free fraction increases from approximately 10% at 40 mcg/mL to 18.5% at 130 mcg/mL. Protein binding of valproate is reduced in the elderly, in patients with chronic hepatic diseases, in patients with renal impairment, and in the presence of other drugs (e.g., aspirin). Conversely, valproate may displace certain protein-bound drugs (e.g., phenytoin, carbamazepine, warfarin, and tolbutamide) [see DRUG INTERACTIONS for more detailed information on the pharmacokinetic interactions of valproate with other drugs].
CNS Distribution
Valproate concentrations in cerebrospinal fluid (CSF) approximate unbound concentrations in plasma (about 10% of total concentration).
Metabolism
Valproate is metabolized almost entirely by the liver. In adult patients on monotherapy, 30-50% of an administered dose appears in urine as a glucuronide conjugate. Mitochondrial β-oxidation is the other major metabolic pathway, typically accounting for over 40% of the dose. Usually, less than 15-20% of the dose is eliminated by other oxidative mechanisms. Less than 3% of an administered dose is excreted unchanged in urine.
The relationship between dose and total valproate concentration is nonlinear; concentration does not increase proportionally with the dose, but rather, increases to a lesser extent due to saturable plasma protein binding. The kinetics of unbound drug are linear.
Elimination
Mean plasma clearance and volume of distribution for total valproate are 0.56 L/hr/1.73 m2 and 11 L/1.73 m2, respectively. Mean plasma clearance and volume of distribution for free valproate are 4.6 L/hr/1.73 m2 and 92 L/1.73 m2. Mean terminal half-life for valproate monotherapy ranged from 9 to 16 hours following oral dosing regimens of 250 to 1,000 mg.
The estimates cited apply primarily to patients who are not taking drugs that affect hepatic metabolizing enzyme systems. For example, patients taking enzyme-inducing antiepileptic drugs (carbamazepine, phenytoin, and phenobarbital) will clear valproate more rapidly. Because of these changes in valproate clearance, monitoring of antiepileptic concentrations should be intensified whenever concomitant antiepileptics are introduced or withdrawn.
Special Populations
Effect Of Age
Neonates
Children within the first two months of life have a markedly decreased ability to eliminate valproate compared to older children and adults. This is a result of reduced clearance (perhaps due to delay in development of glucuronosyltransferase and other enzyme systems involved in valproate elimination) as well as increased volume of distribution (in part due to decreased plasma protein binding). For example, in one study, the half-life in children under 10 days ranged from 10 to 67 hours compared to a range of 7 to 13 hours in children greater than 2 months.
Children
Pediatric patients (i.e., between 3 months and 10 years) have 50% higher clearances expressed on weight (i.e., mL/min/kg) than do adults. Over the age of 10 years, children have pharmacokinetic parameters that approximate those of adults.
Elderly
The capacity of elderly patients (age range: 68 to 89 years) to eliminate valproate has been shown to be reduced compared to younger adults (age range: 22 to 26 years). Intrinsic clearance is reduced by 39%; the free fraction is increased by 44%. Accordingly, the initial dosage should be reduced in the elderly [see DOSAGE AND ADMINISTRATION].
Effect Of Sex
There are no differences in the body surface area adjusted unbound clearance between males and females (4.8 ± 0.17 and 4.7 ± 0.07 L/hr per 1.73 m2, respectively).
Effect Of Race
The effects of race on the kinetics of valproate have not been studied.
Effect Of Disease
Liver Disease
Liver disease impairs the capacity to eliminate valproate. In one study, the clearance of free valproate was decreased by 50% in 7 patients with cirrhosis and by 16% in 4 patients with acute hepatitis, compared with 6 healthy subjects. In that study, the half-life of valproate was increased from 12 to 18 hours. Liver disease is also associated with decreased albumin concentrations and larger unbound fractions (2 to 2.6 fold increase) of valproate. Accordingly, monitoring of total concentrations may be misleading since free concentrations may be substantially elevated in patients with hepatic disease whereas total concentrations may appear to be normal [see BOXED WARNING, CONTRAINDICATIONS, and WARNINGS AND PRECAUTIONS].
Renal Disease
A slight reduction (27%) in the unbound clearance of valproate has been reported in patients with renal failure (creatinine clearance < 10 mL/minute); however, hemodialysis typically reduces valproate concentrations by about 20%. Therefore, no dosage adjustment appears to be necessary in patients with renal failure. Protein binding in these patients is substantially reduced; thus, monitoring total concentrations may be misleading.
Clinical Studies
Mania
The effectiveness of Depakote for the treatment of acute mania was demonstrated in two 3-week, placebo controlled, parallel group studies.
(1) Study 1
The first study enrolled adult patients who met DSM-III-R criteria for bipolar disorder and who were hospitalized for acute mania. In addition, they had a history of failing to respond to or not tolerating previous lithium carbonate treatment. Depakote was initiated at a dose of 250 mg tid and adjusted to achieve serum valproate concentrations in a range of 50-100 mcg/mL by day 7. Mean Depakote doses for completers in this study were 1,118, 1,525, and 2,402 mg/day at Days 7, 14, and 21, respectively. Patients were assessed on the Young Mania Rating Scale (YMRS; score ranges from 0-60), an augmented Brief Psychiatric Rating Scale (BPRS-A), and the Global Assessment Scale (GAS). Baseline scores and change from baseline in the Week 3 endpoint (last-observation-carry-forward) analysis were as follows:
Table 6. Study 1
YMRS Total Score | |||
Group | Baseline1 | BL to Wk 32 | Difference3 |
Placebo | 28.8 | +0.2 | |
Depakote | 28.5 | - 9.5 | 9.7 |
BPRS-A Total Score | |||
Group | Baseline1 | BL to Wk 32 | Difference3 |
Placebo | 76.2 | + 1.8 | |
Depakote | 76.4 | -17.0 | 18.8 |
GAS Score | |||
Group | Baseline1 | BL to Wk 32 | Difference3 |
Placebo | 31.8 | 0.0 | |
Depakote | 30.3 | + 18.1 | 18.1 |
1 Mean score at baseline 2 Change from baseline to Week 3 (LOCF) 3 Difference in change from baseline to Week 3 endpoint (LOCF) between Depakote and placebo |
Depakote was statistically significantly superior to placebo on all three measures of outcome.
(2) Study 2
The second study enrolled adult patients who met Research Diagnostic Criteria for manic disorder and who were hospitalized for acute mania. Depakote was initiated at a dose of 250 mg tid and adjusted within a dose range of 750-2,500 mg/day to achieve serum valproate concentrations in a range of 40-150 mcg/mL. Mean Depakote doses for completers in this study were 1,116, 1,683, and 2,006 mg/day at Days 7, 14, and 21, respectively. Study 2 also included a lithium group for which lithium doses for completers were 1,312, 1,869, and 1,984 mg/day at Days 7, 14, and 21, respectively. Patients were assessed on the Manic Rating Scale (MRS; score ranges from 11-63), and the primary outcome measures were the total MRS score, and scores for two subscales of the MRS, i.e., the Manic Syndrome Scale (MSS) and the Behavior and Ideation Scale (BIS). Baseline scores and change from baseline in the Week 3 endpoint (last-observationcarry- forward) analysis were as follows:
Table 7. Study 2
MRS Total Score | |||
Group | Baseline1 | BL to Day 212 | Difference3 |
Placebo | 38.9 | - 4.4 | |
Lithium | 37.9 | -10.5 | 6.1 |
Depakote | 38.1 | - 9.5 | 5.1 |
MSS Total Score | |||
Group | Baseline1 | BL to Day 212 | Difference3 |
Placebo | 18.9 | -2.5 | |
Lithium | 18.5 | - 6.2 | 3.7 |
Depakote | 18.9 | - 6.0 | 3.5 |
BIS Total Score | |||
Group | Baseline1 | BL to Day 212 | Difference3 |
Placebo | 16.4 | -1.4 | |
Lithium | 16.0 | -3.8 | 2.4 |
Depakote | 15.7 | -3.2 | 1.8 |
1 Mean score at baseline 2 Change from baseline to Day 21 (LOCF) 3 Difference in change from baseline to Day 21 endpoint (LOCF) between Depakote and placebo and lithium and placebo |
Depakote was statistically significantly superior to placebo on all three measures of outcome. An exploratory analysis for age and gender effects on outcome did not suggest any differential responsiveness on the basis of age or gender.
A comparison of the percentage of patients showing ≥ 30% reduction in the symptom score from baseline in each treatment group, separated by study, is shown in Figure 1.
Figure 1
![]() |
* p < 0.05 PBO = placebo, DVPX = Depakote |
Epilepsy
The efficacy of valproate in reducing the incidence of complex partial seizures (CPS) that occur in isolation or in association with other seizure types was established in two controlled trials.
In one, multi-clinic, placebo controlled study employing an add-on design (adjunctive therapy), 144 patients who continued to suffer eight or more CPS per 8 weeks during an 8 week period of monotherapy with doses of either carbamazepine or phenytoin sufficient to assure plasma concentrations within the "therapeutic range" were randomized to receive, in addition to their original antiepilepsy drug (AED), either Depakote or placebo. Randomized patients were to be followed for a total of 16 weeks. The following table presents the findings.
Table 8. Adjunctive Therapy Study Median Incidence of CPS per 8 Weeks
Add-on Treatment | Number of Patients | Baseline Incidence | Baseline Incidence |
Depakote | 75 | 16.0 | 8.9* |
Placebo | 69 | 14.5 | 11.5 |
* Reduction from baseline statistically significantly greater for valproate than placebo at p ≤ 0.05 level. |
Figure 2 presents the proportion of patients (X axis) whose percentage reduction from baseline in complex partial seizure rates was at least as great as that indicated on the Y axis in the adjunctive therapy study. A positive percent reduction indicates an improvement (i.e., a decrease in seizure frequency), while a negative percent reduction indicates worsening. Thus, in a display of this type, the curve for an effective treatment is shifted to the left of the curve for placebo. This figure shows that the proportion of patients achieving any particular level of improvement was consistently higher for valproate than for placebo. For example, 45% of patients treated with valproate had a ≥ 50% reduction in complex partial seizure rate compared to 23% of patients treated with placebo.
Figure 2
![]() |
The second study assessed the capacity of valproate to reduce the incidence of CPS when administered as the sole AED. The study compared the incidence of CPS among patients randomized to either a high or low dose treatment arm. Patients qualified for entry into the randomized comparison phase of this study only if 1) they continued to experience 2 or more CPS per 4 weeks during an 8 to 12 week long period of monotherapy with adequate doses of an AED (i.e., phenytoin, carbamazepine, phenobarbital, or primidone) and 2) they made a successful transition over a two week interval to valproate. Patients entering the randomized phase were then brought to their assigned target dose, gradually tapered off their concomitant AED and followed for an interval as long as 22 weeks. Less than 50% of the patients randomized, however, completed the study. In patients converted to Depakote monotherapy, the mean total valproate concentrations during monotherapy were 71 and 123 mcg/mL in the low dose and high dose groups, respectively.
The following table presents the findings for all patients randomized who had at least one postrandomization assessment.
Table 9. Monotherapy Study Median Incidence of CPS per 8 Weeks
Treatment | Number of Patients | Baseline Incidence | Randomized Phase Incidence |
High dose Depakote | 131 | 13.2 | 10.7* |
Low dose Depakote | 134 | 14.2 | 13.8 |
* Reduction from baseline statistically significantly greater for high dose than low dose at p ≤ 0.05 level. |
Figure 3 presents the proportion of patients (X axis) whose percentage reduction from baseline in complex partial seizure rates was at least as great as that indicated on the Y axis in the monotherapy study. A positive percent reduction indicates an improvement (i.e., a decrease in seizure frequency), while a negative percent reduction indicates worsening. Thus, in a display of this type, the curve for a more effective treatment is shifted to the left of the curve for a less effective treatment. This figure shows that the proportion of patients achieving any particular level of reduction was consistently higher for high dose valproate than for low dose valproate. For example, when switching from carbamazepine, phenytoin, phenobarbital or primidone monotherapy to high dose valproate monotherapy, 63% of patients experienced no change or a reduction in complex partial seizure rates compared to 54% of patients receiving low dose valproate.
Figure 3
![]() |
Information on pediatric studies is presented in section 8.
Migraine
The results of two multicenter, randomized, double-blind, placebo-controlled clinical trials established the effectiveness of Depakote in the prophylactic treatment of migraine headache.
Both studies employed essentially identical designs and recruited patients with a history of migraine with or without aura (of at least 6 months in duration) who were experiencing at least 2 migraine headaches a month during the 3 months prior to enrollment. Patients with cluster headaches were excluded. Women of childbearing potential were excluded entirely from one study, but were permitted in the other if they were deemed to be practicing an effective method of contraception.
In each study following a 4-week single-blind placebo baseline period, patients were randomized, under double blind conditions, to Depakote or placebo for a 12-week treatment phase, comprised of a 4-week dose titration period followed by an 8-week maintenance period. Treatment outcome was assessed on the basis of 4-week migraine headache rates during the treatment phase.
In the first study, a total of 107 patients (24 M, 83 F), ranging in age from 26 to 73 were randomized 2:1, Depakote to placebo. Ninety patients completed the 8-week maintenance period. Drug dose titration, using 250 mg tablets, was individualized at the investigator's discretion. Adjustments were guided by actual/sham trough total serum valproate levels in order to maintain the study blind. In patients on Depakote doses ranged from 500 to 2,500 mg a day. Doses over 500 mg were given in three divided doses (TID). The mean dose during the treatment phase was 1,087 mg/day resulting in a mean trough total valproate level of 72.5 mcg/mL, with a range of 31 to 133 mcg/mL.
The mean 4-week migraine headache rate during the treatment phase was 5.7 in the placebo group compared to 3.5 in the Depakote group (see Figure 4). These rates were significantly different.
In the second study, a total of 176 patients (19 males and 157 females), ranging in age from 17 to 76 years, were randomized equally to one of three Depakote dose groups (500, 1,000, or 1,500 mg/day) or placebo. The treatments were given in two divided doses (BID). One hundred thirtyseven patients completed the 8-week maintenance period. Efficacy was to be determined by a comparison of the 4-week migraine headache rate in the combined 1,000/1,500 mg/day group and placebo group.
The initial dose was 250 mg daily. The regimen was advanced by 250 mg every 4 days (8 days for 500 mg/day group), until the randomized dose was achieved. The mean trough total valproate levels during the treatment phase were 39.6, 62.5, and 72.5 mcg/mL in the Depakote 500, 1,000, and 1,500 mg/day groups, respectively.
The mean 4-week migraine headache rates during the treatment phase, adjusted for differences in baseline rates, were 4.5 in the placebo group, compared to 3.3, 3.0, and 3.3 in the Depakote 500, 1,000, and 1,500 mg/day groups, respectively, based on intent-to-treat results (see Figure 4). Migraine headache rates in the combined Depakote 1,000/1,500 mg group were significantly lower than in the placebo group.
Figure 4 Mean 4-week Migraine Rates
![]() |
1 Mean dose of Depakote was 1,087 mg/day. 2 Dose of Depakote was 500 or 1,000 mg/day. |
PATIENT INFORMATION
DEPAKOTE ER
(dep-a-kOte)
(divalproex sodium) Extended-Release Tablets
DEPAKOTE
(dep-a-kOte)
(divalproex sodium) Tablets
DEPAKOTE
(dep-a-kOte)
(divalproex sodium delayed release capsules)
Sprinkle Capsules
Read this Medication Guide before you start taking Depakote and each time you get a refill.
There may be new information. This information does not take the place of talking to your healthcare provider about your medical condition or treatment.
What is the most important information I should know about Depakote?
Do not stop taking Depakote without first talking to your healthcare provider.
Stopping Depakote suddenly can cause serious problems.
Depakote can cause serious side effects, including:
In some cases, liver damage may continue despite stopping the drug.
- Serious liver damage that can cause death, especially in children younger than 2 years old. The risk of getting this serious liver damage is more likely to happen within the first 6 months of treatment.
Call your healthcare provider right away if you get any of the following symptoms:
- nausea or vomiting that does not go away
- loss of appetite
- pain on the right side of your stomach (abdomen)
- dark urine
- swelling of your face
- yellowing of your skin or the whites of your eyes
- Depakote may harm your unborn baby.
- If you take Depakote during pregnancy for any medical condition, your baby is at risk for serious birth defects that affect the brain and spinal cord and are called spina bifida or neural tube defects. These defects occur in 1 to 2 out of every 100 babies born to mothers who use this medicine during pregnancy. These defects can begin in the first month, even before you know you are pregnant. Other birth defects that affect the structures of the heart, head, arms, legs, and the opening where the urine comes out (urethra) on the bottom of the penis can also happen. Decreased hearing or hearing loss can also happen.
- Birth defects may occur even in children born to women who are not taking any medicines and do not have other risk factors.
- Taking folic acid supplements before getting pregnant and during early pregnancy can lower the chance of having a baby with a neural tube defect.
- If you take Depakote during pregnancy for any medical condition, your child is at risk for having lower IQ and may be at risk for developing autism or attention deficit/hyperactivity disorder.
- There may be other medicines to treat your condition that have a lower chance of causing birth defects, decreased IQ, or other disorders in your child.
- Women who are pregnant must not take Depakote to prevent migraine headaches.
- All women of childbearing age (including girls from the start of puberty) should talk to their healthcare provider about using other possible treatments instead of Depakote. If the decision is made to use Depakote, you should use effective birth control (contraception).
- Tell your healthcare provider right away if you become pregnant while taking Depakote. You and your healthcare provider should decide if you will continue to take Depakote while you are pregnant.
- Pregnancy Registry: If you become pregnant while taking Depakote, talk to your healthcare provider about registering with the North American Antiepileptic Drug Pregnancy Registry. You can enroll in this registry by calling toll-free 1-888-233-2334 or by visiting the website, http://www.aedpregnancyregistry.org/. The purpose of this registry is to collect information about the safety of antiepileptic drugs during pregnancy.
- Inflammation of your pancreas that can cause death.
Call your healthcare provider right away if you have any of these symptoms:
- severe stomach pain that you may also feel in your back
- nausea or vomiting that does not go away
- Like other antiepileptic drugs, Depakote may cause suicidal thoughts or actions in a very small number of people, about 1 in 500.
Call a healthcare provider right away if you have any of these symptoms, especially if they are new, worse, or worry you:
- thoughts about suicide or dying
- attempts to commit suicide
- new or worse depression
- new or worse anxiety
- feeling agitated or restless
- panic attacks
- trouble sleeping (insomnia)
- new or worse irritability
- acting aggressive, being angry, or violent
- acting on dangerous impulses
- an extreme increase in activity and talking (mania)
- other unusual changes in behavior or mood
How can I watch for early symptoms of suicidal thoughts and actions?
- Pay attention to any changes, especially sudden changes in mood, behaviors, thoughts, or feelings.
- Keep all follow-up visits with your healthcare provider as scheduled.
Call your healthcare provider between visits as needed, especially if you are worried about symptoms.
Do not stop Depakote without first talking to a healthcare provider. Stopping Depakote suddenly can cause serious problems. Stopping a seizure medicine suddenly in a patient who has epilepsy can cause seizures that will not stop (status epilepticus).
Suicidal thoughts or actions can be caused by things other than medicines. If you have suicidal thoughts or actions, your healthcare provider may check for other causes.
What is Depakote?
Depakote comes in different dosage forms with different usages.
Depakote Tablets and Depakote Extended-Release Tablets are prescription medicines used:
- to treat manic episodes associated with bipolar disorder
- alone or with other medicines to treat:
- complex partial seizures in adults and children 10 years of age and older
- simple and complex absence seizures, with or without other seizure types
- to prevent migraine headaches
Depakote Sprinkle Capsules is a prescription medicine used alone or with other medicines, to treat:
- complex partial seizures in adults and children 10 years of age and older
- simple and complex absence seizures, with or without other seizure types
Who should not take Depakote?
Do not take Depakote if you:
- have liver problems
- have or think you have a genetic liver problem caused by a mitochondrial disorder (e.g. Alpers-Huttenlocher syndrome)
- are allergic to divalproex sodium, valproic acid, sodium valproate, or any of the ingredients in Depakote. See the end of this leaflet for a complete list of ingredients in Depakote.
- have a genetic problem called urea cycle disorder
- are taking it to prevent migraine headaches and are either pregnant or may become pregnant because you are not using effective birth control (contraception)
What should I tell my healthcare provider before taking Depakote?
Before you take Depakote, tell your healthcare provider if you:
- have a genetic liver problem caused by a mitochondrial disorder (e.g. Alpers-Huttenlocher syndrome)
- drink alcohol
- are pregnant or breastfeeding. Depakote can pass into breast milk. Talk to your healthcare provider about the best way to feed your baby if you take Depakote.
- have or have had depression, mood problems, or suicidal thoughts or behavior
- have any other medical conditions
Tell your healthcare provider about all the medicines you take, including prescription and non-prescription medicines, vitamins, herbal supplements and medicines that you take for a short period of time.
Taking Depakote with certain other medicines can cause side effects or affect how well they work. Do not start or stop other medicines without talking to your healthcare provider.
Know the medicines you take. Keep a list of them and show it to your healthcare provider and pharmacist each time you get a new medicine.
How should I take Depakote?
- Take Depakote exactly as your healthcare provider tells you. Your healthcare provider will tell you how much Depakote to take and when to take it.
- Your healthcare provider may change your dose.
- Do not change your dose of Depakote without talking to your healthcare provider.
- Do not stop taking Depakote without first talking to your healthcare provider. Stopping Depakote suddenly can cause serious problems.
- Swallow Depakote tablets or Depakote ER tablets whole. Do not crush or chew Depakote tablets or Depakote ER tablets. Tell your healthcare provider if you cannot swallow Depakote whole. You may need a different medicine.
- Depakote Sprinkle Capsules may be swallowed whole, or they may be opened and the contents may be sprinkled on a small amount of soft food, such as applesauce or pudding. See the Administration Guide at the end of this Medication Guide for detailed instructions on how to use Depakote Sprinkle Capsules.
- If you take too much Depakote, call your healthcare provider or local Poison Control Center right away.
What should I avoid while taking Depakote?
- Depakote can cause drowsiness and dizziness. Do not drink alcohol or take other medicines that make you sleepy or dizzy while taking Depakote, until you talk with your doctor. Taking Depakote with alcohol or drugs that cause sleepiness or dizziness may make your sleepiness or dizziness worse.
- Do not drive a car or operate dangerous machinery until you know how Depakote affects you. Depakote can slow your thinking and motor skills.
What are the possible side effects of Depakote?
- See “What is the most important information I should know about Depakote?”
Depakote can cause serious side effects including:
- Bleeding problems: red or purple spots on your skin, bruising, pain and swelling into your joints due to bleeding or bleeding from your mouth or nose.
- High ammonia levels in your blood: feeling tired, vomiting, changes in mental status.
- Low body temperature (hypothermia): drop in your body temperature to less than 95°F, feeling tired, confusion, coma.
- Allergic (hypersensitivity) reactions: fever, skin rash, hives, sores in your mouth, blistering and peeling of your skin, swelling of your lymph nodes, swelling of your face, eyes, lips, tongue, or throat, trouble swallowing or breathing.
- Drowsiness or sleepiness in the elderly. This extreme drowsiness may cause you to eat or drink less than you normally would. Tell your doctor if you are not able to eat or drink as you normally do. Your doctor may start you at a lower dose of Depakote.
Call your healthcare provider right away, if you have any of the symptoms listed above.
The common side effects of Depakote include:
- nausea
- headache
- sleepiness
- vomiting
- weakness
- tremor
- dizziness
- stomach pain
- blurry vision
- double vision
- diarrhea
- increased appetite
- weight gain
- hair loss
- loss of appetite
- problems with walking or coordination
These are not all of the possible side effects of Depakote. For more information, ask your healthcare provider or pharmacist.
Tell your healthcare provider if you have any side effect that bothers you or that does not go away.
Call your doctor for medical advice about side effects. You may report side effects to FDA at 1-800-FDA-1088.
How should I store Depakote?
- Store Depakote Extended-Release Tablets between 59°F to 86°F (15°C to 30°C).
- Store Depakote Delayed Release Tablets below 86°F (30°C).
- Store Depakote Sprinkle Capsules below 77°F (25°C).
Keep Depakote and all medicines out of the reach of children.
General information about the safe and effective use of Depakote
Medicines are sometimes prescribed for purposes other than those listed in a Medication Guide. Do not use Depakote for a condition for which it was not prescribed. Do not give Depakote to other people, even if they have the same symptoms that you have. It may harm them.
This Medication Guide summarizes the most important information about Depakote. If you would like more information, talk with your healthcare provider. You can ask your pharmacist or healthcare provider for information about Depakote that is written for health professionals.
For more information, go to www.rxabbvie.com or call 1-800-633-9110.
What are the ingredients in Depakote?
Active ingredient: divalproex sodium
Inactive ingredients:
- Depakote Extended-Release Tablets: FD&C Blue No. 1, hypromellose, lactose, microcrystalline cellulose, polyethylene glycol, potassium sorbate, propylene glycol, silicon dioxide, titanium dioxide, and triacetin. The 500 mg tablets also contain iron oxide and polydextrose.
- Depakote Tablets: cellulosic polymers, diacetylated monoglycerides, povidone, pregelatinized starch (contains corn starch), silica gel, talc, titanium dioxide, and vanillin.
125 mg tablets: FD&C Blue No. 1 and FD&C Red No. 40,
250 mg tablets: FD&C Yellow No. 6 and iron oxide,
500 mg tablets: D&C Red No. 30, FD&C Blue No. 2, and iron oxide.
- Individual tablets also contain:
- Depakote Sprinkle Capsules: cellulosic polymers, D&C Red No. 28, FD&C Blue No. 1 gelatin, iron oxide, magnesium stearate, silica gel, titanium dioxide, and triethyl citrate.
This Medication Guide has been approved by the U.S. Food and Drug Administration. Revised: November 2022
From 
Rheumatoid Arthritis Resources
Featured Centers
Health Solutions From Our Sponsors

Report Problems to the Food and Drug Administration
You are encouraged to report negative side effects of prescription drugs to the FDA. Visit the FDA MedWatch website or call 1-800-FDA-1088.